Suppr超能文献

基于支配的分类算法在生物相互作用网络可控性分析中的应用。

Domination based classification algorithms for the controllability analysis of biological interaction networks.

机构信息

Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.

出版信息

Sci Rep. 2022 Jul 13;12(1):11897. doi: 10.1038/s41598-022-15464-4.

Abstract

Deciding the size of a minimum dominating set is a classic NP-complete problem. It has found increasing utility as the basis for classifying vertices in networks derived from protein-protein, noncoding RNA, metabolic, and other biological interaction data. In this context it can be helpful, for example, to identify those vertices that must be present in any minimum solution. Current classification methods, however, can require solving as many instances as there are vertices, rendering them computationally prohibitive in many applications. In an effort to address this shortcoming, new classification algorithms are derived and tested for efficiency and effectiveness. Results of performance comparisons on real-world biological networks are reported.

摘要

确定最小支配集的大小是一个经典的 NP 完全问题。它在作为蛋白质-蛋白质、非编码 RNA、代谢和其他生物相互作用数据衍生的网络中分类顶点的基础方面找到了越来越多的用途。在这种情况下,例如,确定任何最小解决方案中必须存在的那些顶点可能会有所帮助。然而,当前的分类方法可能需要解决与顶点一样多的实例,这使得它们在许多应用中计算上不可行。为了解决这个缺点,我们衍生并测试了新的分类算法,以提高效率和有效性。报告了在真实生物网络上进行性能比较的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e76/9279401/cd54d82f3982/41598_2022_15464_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验