Suppr超能文献

通过深度学习辅助平行链 MCMC 降低计算血液动力学中的几何不确定性。

Reducing Geometric Uncertainty in Computational Hemodynamics by Deep Learning-Assisted Parallel-Chain MCMC.

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556.

出版信息

J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055809.

Abstract

Computational hemodynamic modeling has been widely used in cardiovascular research and healthcare. However, the reliability of model predictions is largely dependent on the uncertainties of modeling parameters and boundary conditions, which should be carefully quantified and further reduced with available measurements. In this work, we focus on propagating and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is presented to enable efficient Bayesian posterior sampling and geometric uncertainty reduction. A DL model is built to approximate the geometry-to-hemodynamic map, which is trained actively using online data collected from parallel MCMC chains and utilized for early rejection of unlikely proposals to facilitate convergence with less expensive full-order model evaluations. Numerical studies on two-dimensional aortic flows are conducted to demonstrate the effectiveness and merit of the proposed method.

摘要

计算血流动力学建模在心血管研究和医疗保健中得到了广泛应用。然而,模型预测的可靠性在很大程度上取决于建模参数和边界条件的不确定性,这些不确定性应该通过可用的测量值进行仔细量化并进一步降低。在这项工作中,我们专注于在贝叶斯框架内传播和降低血管几何形状的不确定性。提出了一种新的深度学习 (DL) 辅助并行马尔可夫链蒙特卡罗 (MCMC) 方法,以实现有效的贝叶斯后验抽样和几何不确定性降低。建立了一个 DL 模型来近似几何形状到血流动力学的映射,该模型使用从并行 MCMC 链中收集的在线数据进行主动训练,并用于早期拒绝不太可能的建议,以促进收敛,同时减少昂贵的全阶模型评估。对二维主动脉流进行了数值研究,以证明所提出方法的有效性和优点。

相似文献

5
Quantifying Registration Uncertainty With Sparse Bayesian Modelling.基于稀疏贝叶斯模型的配准不确定性量化。
IEEE Trans Med Imaging. 2017 Feb;36(2):607-617. doi: 10.1109/TMI.2016.2623608. Epub 2016 Nov 1.
9
Phylogenetic inference via sequential Monte Carlo.基于序贯蒙特卡罗法的系统发育推断
Syst Biol. 2012 Jul;61(4):579-93. doi: 10.1093/sysbio/syr131. Epub 2012 Jan 4.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
8
Data-Augmented Modeling of Intracranial Pressure.颅内压的数据增强建模。
Ann Biomed Eng. 2019 Mar;47(3):714-730. doi: 10.1007/s10439-018-02191-z. Epub 2019 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验