Suppr超能文献

长度偏倚抽样下加速失效时间模型的朴素估计量的效率

Efficiency of Naive Estimators for Accelerated Failure Time Models under Length-Biased Sampling.

作者信息

Roy Pourab, Fine Jason P, Kosorok Michael R

机构信息

US Food and Drug Administration (This work was done prior to the author joining the FDA and does not represent the official position of the FDA).

Department of Biostatistics, University of North Carolina at Chapel Hill.

出版信息

Scand Stat Theory Appl. 2022 Jun;49(2):525-541. doi: 10.1111/sjos.12526. Epub 2021 Mar 16.

Abstract

In prevalent cohort studies where subjects are recruited at a cross-section, the time to an event may be subject to length-biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum. In the regression setting, assuming a semiparametric accelerated failure time model for the underlying event time, where the intercept parameter is absorbed into the nuisance parameter, it has been shown that the model remains invariant under these observed data set-ups and can be fitted using standard methodology for accelerated failure time model estimation, ignoring the length-bias. However, the efficiency of these estimators is unclear, owing to the fact that the observed covariate distribution, which is also length-biased, may contain information about the regression parameter in the accelerated life model. We demonstrate that if the true covariate distribution is completely unspecified, then the naive estimator based on the conditional likelihood given the covariates is fully efficient for the slope.

摘要

在横断面招募受试者的流行队列研究中,事件发生时间可能会受到长度偏倚抽样的影响,观察到的数据可能是向前复发时间、向后复发时间或它们的总和。在回归设定中,假设潜在事件时间的半参数加速失效时间模型,其中截距参数被纳入干扰参数,已经表明该模型在这些观察到的数据设置下保持不变,并且可以使用加速失效时间模型估计的标准方法进行拟合,而忽略长度偏倚。然而,由于观察到的协变量分布也是长度偏倚的,可能包含加速寿命模型中回归参数的信息,这些估计量的效率尚不清楚。我们证明,如果真实的协变量分布完全未指定,那么基于给定协变量的条件似然的朴素估计量对于斜率是完全有效的。

相似文献

7
Information in the sample covariate distribution in prevalent cohorts.现患队列中样本协变量分布的信息。
Stat Med. 2011 May 30;30(12):1397-409. doi: 10.1002/sim.4180. Epub 2011 Jan 23.
10

本文引用的文献

1
Prevalent cohort studies and unobserved heterogeneity.流行队列研究与未观察到的异质性。
Lifetime Data Anal. 2019 Oct;25(4):712-738. doi: 10.1007/s10985-019-09479-9. Epub 2019 Jul 3.
4
Information in the sample covariate distribution in prevalent cohorts.现患队列中样本协变量分布的信息。
Stat Med. 2011 May 30;30(12):1397-409. doi: 10.1002/sim.4180. Epub 2011 Jan 23.
5
The accelerated failure time model under biased sampling.有偏抽样下的加速失效时间模型
Biometrics. 2010 Dec;66(4):1306-8; discussion 1308. doi: 10.1111/j.1541-0420.2009.01366_1.x.
6
Semiparametric regression in size-biased sampling.规模偏差抽样中的半参数回归
Biometrics. 2010 Mar;66(1):149-58. doi: 10.1111/j.1541-0420.2009.01260.x. Epub 2009 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验