Liu Bojing, Wang Yinxi, Weitz Philippe, Lindberg Johan, Hartman Johan, Wang Wanzhong, Egevad Lars, Grönberg Henrik, Eklund Martin, Rantalainen Mattias
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
Department of Oncology-Pathology, Karolinska Institutet, Stockholm 171 64, Sweden.
iScience. 2022 Jun 23;25(7):104663. doi: 10.1016/j.isci.2022.104663. eCollection 2022 Jul 15.
Routine transrectal ultrasound-guided systematic prostate biopsy only samples a small volume of the prostate and tumors between biopsy cores can be missed, leading to low sensitivity to detect clinically relevant prostate cancers (PCa). Deep learning may enable detection of PCa despite benign biopsies. We included 14,354 hematoxylin-eosin stained benign prostate biopsies from 1,508 men in two groups: men without established PCa diagnosis and men with at least one core biopsy diagnosed with PCa. A 10-Convolutional Neural Network ensemble was optimized to distinguish benign biopsies from benign men or patients with PCa. Area under the receiver operating characteristic curve was estimated at 0.739 (bootstrap 95% CI:0.682-0.796) on man level in the held-out test set. At the specificity of 0.90, the model sensitivity was 0.348. The proposed model can detect men with risk of missed PCa and has the potential to reduce false negatives and to indicate men who could benefit from rebiopsies.
常规经直肠超声引导下的系统性前列腺活检仅采集少量前列腺组织样本,活检针芯之间的肿瘤可能会被遗漏,导致检测临床相关前列腺癌(PCa)的敏感性较低。深度学习可能有助于在活检结果为良性的情况下检测出PCa。我们纳入了来自1508名男性的14354份苏木精-伊红染色的良性前列腺活检样本,分为两组:未确诊PCa的男性和至少有一次活检针芯诊断为PCa的男性。优化了一个10卷积神经网络集成模型,以区分良性活检样本与未患PCa的男性或患有PCa的患者的活检样本。在保留测试集中,受试者操作特征曲线下面积在个体水平上估计为0.739(自助法95%置信区间:0.682-0.796)。在特异性为0.90时,模型敏感性为0.348。所提出的模型可以检测出有漏诊PCa风险的男性,有可能减少假阴性,并指出可能从再次活检中获益的男性。