Suppr超能文献

不可逆电穿孔治疗中热缓解策略的比较建模研究

A Comparative Modeling Study of Thermal Mitigation Strategies in Irreversible Electroporation Treatments.

作者信息

Aycock Kenneth N, Campelo Sabrina N, Davalos Rafael V

机构信息

Bioelectromechanical Systems Lab, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech Department of Biomedical Engineering and Mechanics, 320 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061.

出版信息

J Heat Transfer. 2022 Mar 1;144(3):031206. doi: 10.1115/1.4053199. Epub 2022 Jan 18.

Abstract

Irreversible electroporation (IRE), also referred to as nonthermal pulsed field ablation (PFA), is an attractive focal ablation modality for solid tumors and cardiac tissue due to its ability to destroy aberrant cells with limited disruption of the underlying tissue architecture. Despite its nonthermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested as a potential means to limit thermal damage. However, several variables affect TM performance including the pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters, meaning direct comparisons between approaches are lacking. In this study, we developed a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores to simulate clinical IRE treatments in pancreatic tissue. This approach reveals that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to existing solid probes. Furthermore, actively cooled probes provide additional control over thermal effects within the probe vicinity and can altogether abrogate thermal damage. In practice, such differences in performance must be weighed against the increased time, expense, and effort required for modified probes compared to existing solid probes.

摘要

不可逆电穿孔(IRE),也被称为非热脉冲场消融(PFA),是一种针对实体肿瘤和心脏组织具有吸引力的局部消融方式,因为它能够在对底层组织结构破坏有限的情况下破坏异常细胞。尽管其细胞死亡机制是非热的,但电能的应用会导致焦耳热,如果被忽视,可能会造成不期望的热损伤。包括相变材料(PCM)和主动冷却(AC)在内的工程热缓解(TM)技术已被报道并作为限制热损伤的潜在手段进行了测试。然而,几个变量会影响TM性能,包括脉冲模式、电极几何形状、PCM成分和所选的主动冷却参数,这意味着缺乏不同方法之间的直接比较。在本研究中,我们开发了一种传统双极和单极探针的计算模型,其核心为实心、填充PCM或主动冷却,以模拟胰腺组织中的临床IRE治疗。该方法表明,与现有的实心探针相比,集成PCM核心的探针可以进行调整以大幅限制热损伤。此外,主动冷却探针可对探针附近的热效应提供额外控制,并可完全消除热损伤。在实际应用中,与现有的实心探针相比,这种性能差异必须与改进探针所需增加的时间、费用和工作量相权衡。

相似文献

1
A Comparative Modeling Study of Thermal Mitigation Strategies in Irreversible Electroporation Treatments.
J Heat Transfer. 2022 Mar 1;144(3):031206. doi: 10.1115/1.4053199. Epub 2022 Jan 18.
2
Modeling of a single bipolar electrode with tines for irreversible electroporation delivery.
Comput Biol Med. 2022 Mar;142:104870. doi: 10.1016/j.compbiomed.2021.104870. Epub 2021 Sep 14.
3
Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy.
Int J Hyperthermia. 2019;36(1):953-963. doi: 10.1080/02656736.2019.1657187.
4
8
Effects of internal electrode cooling on irreversible electroporation using a perfused organ model.
Int J Hyperthermia. 2018;35(1):44-55. doi: 10.1080/02656736.2018.1473893. Epub 2018 May 28.

引用本文的文献

1
3
Toward Large Ablations With Single-Needle High-Frequency Irreversible Electroporation In Vivo.
IEEE Trans Biomed Eng. 2025 Feb;72(2):705-715. doi: 10.1109/TBME.2024.3468159. Epub 2025 Jan 21.
4
Cardiac blood vessels and irreversible electroporation: findings from pulsed field ablation.
Vessel Plus. 2024;8. doi: 10.20517/2574-1209.2023.80. Epub 2024 Jan 30.
5
Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia.
Pathophysiology. 2024 Jan 10;31(1):32-43. doi: 10.3390/pathophysiology31010003.
6
Recent Advancements in Electroporation Technologies: From Bench to Clinic.
Annu Rev Biomed Eng. 2023 Jun 8;25:77-100. doi: 10.1146/annurev-bioeng-110220-023800. Epub 2023 Feb 28.
7
Active esophageal cooling during radiofrequency ablation of the left atrium: data review and update.
Expert Rev Med Devices. 2022 Dec;19(12):949-957. doi: 10.1080/17434440.2022.2150930. Epub 2022 Nov 27.
8
Real-Time Temperature Rise Estimation during Irreversible Electroporation Treatment through State-Space Modeling.
Bioengineering (Basel). 2022 Sep 23;9(10):499. doi: 10.3390/bioengineering9100499.

本文引用的文献

1
Modeling of a single bipolar electrode with tines for irreversible electroporation delivery.
Comput Biol Med. 2022 Mar;142:104870. doi: 10.1016/j.compbiomed.2021.104870. Epub 2021 Sep 14.
2
Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature.
Sensors (Basel). 2021 Jun 21;21(12):4236. doi: 10.3390/s21124236.
3
Cell death due to electroporation - A review.
Bioelectrochemistry. 2021 Oct;141:107871. doi: 10.1016/j.bioelechem.2021.107871. Epub 2021 Jun 6.
5
Efficacy of multi-electrode linear irreversible electroporation.
Europace. 2021 Mar 8;23(3):464-468. doi: 10.1093/europace/euaa280.
7
Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties.
IEEE Trans Biomed Eng. 2021 Mar;68(3):771-782. doi: 10.1109/TBME.2020.3013572. Epub 2021 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验