Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
Int J Hyperthermia. 2020;37(1):486-505. doi: 10.1080/02656736.2020.1753828.
Irreversible electroporation (IRE) is a relatively new ablation method for the treatment of unresectable cancers. Although the main mechanism of IRE is electric permeabilization of cell membranes, the question is to what extent thermal effects of IRE contribute to tissue ablation. This systematic review reviews the mathematical models used to numerically simulate the heat-generating effects of IRE, and uses the obtained data to assess the degree of mild-hyperthermic (temperatures between 40 °C and 50 °C) and thermally ablative (TA) effects (temperatures exceeding 50 °C) caused by IRE within the IRE-treated region (IRE-TR). A systematic search was performed in medical and technical databases for original studies reporting on numerical simulations of IRE. Data on used equations, study design, tissue models, maximum temperature increase, and surface areas of IRE-TR, mild-hyperthermic, and ablative temperatures were extracted. Several identified models, including Laplace equation for calculation of electric field distribution, Pennes Bioheat Equation for heat transfer, and Arrhenius model for thermal damage, were applied on various electrode and tissue models. Median duration of combined mild-hyperthermic and TA effects is 20% of the treatment time. Based on the included studies, mild-hyperthermic temperatures occurred in 30% and temperatures ≥50 °C in 5% of the IRE-TR. Simulation results in this review show that significant mild-hyperthermic effects occur in a large part of the IRE-TR, and direct thermal ablation in comparatively small regions. Future studies should aim to optimize clinical IRE protocols, maintaining a maximum irreversible permeabilized region with minimal TA effects.
不可逆电穿孔 (IRE) 是一种治疗不可切除癌症的相对较新的消融方法。尽管 IRE 的主要机制是细胞膜的电穿孔,但问题是 IRE 的热效应在多大程度上促进了组织消融。本系统综述回顾了用于数值模拟 IRE 产热效应的数学模型,并使用获得的数据评估 IRE 处理区域 (IRE-TR) 内由 IRE 引起的温和高热(温度在 40°C 和 50°C 之间)和热消融(TA)效应(温度超过 50°C)的程度。在医学和技术数据库中进行了系统搜索,以查找报告关于 IRE 数值模拟的原始研究。提取了使用的方程、研究设计、组织模型、最大温升和 IRE-TR、温和高热和消融温度的表面积的数据。包括用于计算电场分布的拉普拉斯方程、用于传热的彭内斯生物热方程和用于热损伤的阿仑尼乌斯模型在内的几种已识别模型被应用于各种电极和组织模型。温和高热和 TA 效应的综合持续时间是治疗时间的 20%。基于纳入的研究,IRE-TR 的 30%发生温和高热温度,而 5%的温度≥50°C。本综述中的模拟结果表明,IRE-TR 的大部分区域会发生明显的温和高热效应,而在相对较小的区域会发生直接的热消融。未来的研究应旨在优化临床 IRE 方案,在最小化 TA 效应的情况下保持最大不可逆穿孔区域。