Department of Gastroenterology, The Second Affiliated Hospital, the Third Military Medical University, Chongqing, China.
Department of Epidemiology, the Third Military Medical University, Chongqing, China.
JAMA Netw Open. 2022 Jul 1;5(7):e2221992. doi: 10.1001/jamanetworkopen.2022.21992.
Reading small bowel capsule endoscopy (SBCE) videos is a tedious task for clinicians, and a new method should be applied to solve the situation.
To develop and evaluate the performance of a convolutional neural network algorithm for SBCE video review in real-life clinical care.
DESIGN, SETTING, AND PARTICIPANTS: In this multicenter, retrospective diagnostic study, a deep learning neural network (SmartScan) was trained and validated for the SBCE video review. A total of 2927 SBCE examinations from 29 medical centers were used to train SmartScan to detect 17 types of CE structured terminology (CEST) findings from January 1, 2019, to June 30, 2020. SmartScan was later validated with conventional reading (CR) and SmartScan-assisted reading (SSAR) in 2898 SBCE examinations collected from 22 medical centers. Data analysis was performed from January 25 to December 31, 2021.
An artificial intelligence-based tool for interpreting clinical images of SBCE.
The detection rate and efficiency of CEST findings detected by SSAR and CR were compared.
A total of 5825 SBCE examinations were retrospectively collected; 2898 examinations (1765 male participants [60.9%]; mean [SD] age, 49.8 [15.5] years) were included in the validation phase. From a total of 6084 CEST-classified SB findings, SSAR detected 5834 findings (95.9%; 95% CI, 95.4%-96.4%), significantly higher than CR, which detected 4630 findings (76.1%; 95% CI, 75.0%-77.2%). SmartScan-assisted reading achieved a higher per-patient detection rate (79.3% [2298 of 2898]) for CEST findings compared with CR (70.7% [2048 of 2298]; 95% CI, 69.0%-72.3%). With SSAR, the mean (SD) number of images (per SBCE video) requiring review was reduced to 779.2 (337.2) compared with 27 910.8 (12 882.9) with CR, for a mean (SD) reduction rate of 96.1% (4.3%). The mean (SD) reading time with SSAR was shortened to 5.4 (1.5) minutes compared with CR (51.4 [11.6] minutes), for a mean (SD) reduction rate of 89.3% (3.1%).
This study suggests that a convolutional neural network-based algorithm is associated with an increased detection rate of SBCE findings and reduced SBCE video reading time.
阅读小肠胶囊内镜 (SBCE) 视频对于临床医生来说是一项乏味的任务,因此应该采用新的方法来解决这一问题。
开发和评估卷积神经网络算法在真实临床护理中用于 SBCE 视频复查的性能。
设计、地点和参与者:在这项多中心回顾性诊断研究中,对深度学习神经网络 (SmartScan) 进行了训练和验证,用于 SBCE 视频复查。总共使用了 29 个医疗中心的 2927 次 SBCE 检查,从 2019 年 1 月 1 日至 2020 年 6 月 30 日,使用 SmartScan 检测 17 种 CE 结构术语 (CEST) 发现。之后,在 22 个医疗中心收集的 2898 次 SBCE 检查中,使用常规阅读 (CR) 和 SmartScan 辅助阅读 (SSAR) 对 SmartScan 进行了验证。数据分析于 2021 年 1 月 25 日至 12 月 31 日进行。
用于解释 SBCE 临床图像的基于人工智能的工具。
比较 SSAR 和 CR 检测 CEST 发现的检测率和效率。
总共回顾性收集了 5825 次 SBCE 检查;2898 次检查(1765 名男性参与者[60.9%];平均[SD]年龄,49.8 [15.5] 岁)被纳入验证阶段。在总共 6084 次分类的 SB 发现中,SSAR 检测到 5834 次发现(95.9%;95%CI,95.4%-96.4%),明显高于仅检测到 4630 次发现(76.1%;95%CI,75.0%-77.2%)的 CR。与 CR 相比,SmartScan 辅助阅读在检测 CEST 发现方面的每位患者的检测率(79.3%[2898 次中的 2298 次])更高,而 CR 为 70.7%(2048 次中的 2048 次;95%CI,69.0%-72.3%)。使用 SSAR,与 CR(27910.8[12882.9])相比,每 SBCE 视频所需复查的图像(张)的平均(SD)数量减少到 779.2(337.2),平均(SD)减少率为 96.1%(4.3%)。与 CR(51.4[11.6]分钟)相比,使用 SSAR 的平均(SD)阅读时间缩短至 5.4(1.5)分钟,平均(SD)减少率为 89.3%(3.1%)。
本研究表明,基于卷积神经网络的算法与 SBCE 发现的检测率提高和 SBCE 视频阅读时间缩短有关。