Department of Anesthesiology and Pain Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea.
Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
J Crit Care. 2022 Oct;71:154106. doi: 10.1016/j.jcrc.2022.154106. Epub 2022 Jul 11.
The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using the trends of four easy-to-collect vital signs.
The primary training cohort included 1968 patients at the Veterans Health Service Medical Center. The external validation cohort comprised 409 patients at Seoul National University Hospital. Datasets of heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation (SpO2) measured every hour for 10 h were used. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.
The machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89).
This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.
本研究旨在开发和评估一种使用四项易于采集的生命体征趋势预测重症监护病房短期死亡率的机器学习模型。
主要的训练队列纳入了退伍军人健康服务医疗中心的 1968 名患者。外部验证队列包括首尔国立大学医院的 409 名患者。使用每小时测量一次、持续 10 小时的心率、收缩压、舒张压和外周毛细血管血氧饱和度(SpO2)数据集。使用五种机器学习算法(随机森林(RF)、XGBoost、感知机、卷积神经网络和长短期记忆)生成的死亡率预测模型的性能,通过接收者操作特征曲线(AUROC)值和外部验证数据集进行计算和比较。
使用 RF 算法生成的机器学习模型表现最佳。其 AUROC 为 0.922,远优于急性生理学和慢性健康评估 II 模型的 0.8408。使用 SpO2 开发的机器学习模型表现最佳(AUROC 为 0.89)。
这种简单而强大的新死亡率预测模型可用于早期发现可能的死亡率并进行适当的医疗干预,尤其是在病情迅速恶化的患者中。