文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的急性呼吸窘迫综合征患者急性肾损伤预测模型。

Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.

机构信息

Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.

Department of Health Management, Shandong Engineering Laboratory of Health Management, Institute of Health Management, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.

出版信息

BMC Pulm Med. 2023 Oct 3;23(1):370. doi: 10.1186/s12890-023-02663-6.


DOI:10.1186/s12890-023-02663-6
PMID:37789305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10548692/
Abstract

BACKGROUND: Acute kidney injury (AKI) can make cases of acute respiratory distress syndrome (ARDS) more complex, and the combination of the two can significantly worsen the prognosis. Our objective is to utilize machine learning (ML) techniques to construct models that can promptly identify the risk of AKI in ARDS patients. METHOD: We obtained data regarding ARDS patients from the Medical Information Mart for Intensive Care III (MIMIC-III) and MIMIC-IV databases. Within the MIMIC-III dataset, we developed 11 ML prediction models. By evaluating various metrics, we visualized the importance of its features using Shapley additive explanations (SHAP). We then created a more concise model using fewer variables, and optimized it using hyperparameter optimization (HPO). The model was validated using the MIMIC-IV dataset. RESULT: A total of 928 ARDS patients without AKI were included in the analysis from the MIMIC-III dataset, and among them, 179 (19.3%) developed AKI after admission to the intensive care unit (ICU). In the MIMIC-IV dataset, there were 653 ARDS patients included in the analysis, and among them, 237 (36.3%) developed AKI. A total of 43 features were used to build the model. Among all models, eXtreme gradient boosting (XGBoost) performed the best. We used the top 10 features to build a compact model with an area under the curve (AUC) of 0.850, which improved to an AUC of 0.865 after the HPO. In extra validation set, XGBoost_HPO achieved an AUC of 0.854. The accuracy, sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), and F1 score of the XGBoost_HPO model on the test set are 0.865, 0.813, 0.877, 0.578, 0.957 and 0.675, respectively. On extra validation set, they are 0.724, 0.789, 0.688, 0.590, 0.851, and 0.675, respectively. CONCLUSION: ML algorithms, especially XGBoost, are reliable for predicting AKI in ARDS patients. The compact model maintains excellent predictive ability, and the web-based calculator improves clinical convenience. This provides valuable guidance in identifying AKI in ARDS, leading to improved patient outcomes.

摘要

背景:急性肾损伤 (AKI) 可使急性呼吸窘迫综合征 (ARDS) 病例更加复杂,两者结合可显著恶化预后。我们的目标是利用机器学习 (ML) 技术构建能够快速识别 ARDS 患者发生 AKI 风险的模型。

方法:我们从 Medical Information Mart for Intensive Care III (MIMIC-III) 和 MIMIC-IV 数据库中获取 ARDS 患者的数据。在 MIMIC-III 数据集内,我们开发了 11 个 ML 预测模型。通过评估各种指标,我们使用 Shapley 加性解释 (SHAP) 可视化了其特征的重要性。然后,我们使用较少的变量创建了一个更简洁的模型,并使用超参数优化 (HPO) 对其进行了优化。我们使用 MIMIC-IV 数据集对模型进行了验证。

结果:MIMIC-III 数据集共纳入 928 例无 AKI 的 ARDS 患者,其中 179 例(19.3%)在入住重症监护病房(ICU)后发生 AKI。MIMIC-IV 数据集共纳入 653 例 ARDS 患者,其中 237 例(36.3%)发生 AKI。共使用 43 个特征构建模型。所有模型中,eXtreme gradient boosting (XGBoost) 表现最佳。我们使用前 10 个特征构建了一个 AUC 为 0.850 的紧凑模型,经 HPO 优化后 AUC 提高至 0.865。在额外的验证集中,XGBoost_HPO 的 AUC 为 0.854。XGBoost_HPO 模型在测试集上的准确率、敏感度、特异度、阳性预测值 (PPV)、阴性预测值 (NPV) 和 F1 评分分别为 0.865、0.813、0.877、0.578、0.957 和 0.675。在额外的验证集中,它们分别为 0.724、0.789、0.688、0.590、0.851 和 0.675。

结论:ML 算法,尤其是 XGBoost,可可靠预测 ARDS 患者 AKI 的发生。简洁模型保持了出色的预测能力,而基于网络的计算器提高了临床便利性。这为识别 ARDS 中的 AKI 提供了有价值的指导,从而改善了患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/77e588022d51/12890_2023_2663_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/34e463ee9d4d/12890_2023_2663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/21a0983c2003/12890_2023_2663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/4d1024344e2f/12890_2023_2663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/b574180575fe/12890_2023_2663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/488b930e5e45/12890_2023_2663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/77e588022d51/12890_2023_2663_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/34e463ee9d4d/12890_2023_2663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/21a0983c2003/12890_2023_2663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/4d1024344e2f/12890_2023_2663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/b574180575fe/12890_2023_2663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/488b930e5e45/12890_2023_2663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc9/10548692/77e588022d51/12890_2023_2663_Fig6_HTML.jpg

相似文献

[1]
Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.

BMC Pulm Med. 2023-10-3

[2]
[Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11

[3]
MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.

Shock. 2023-3-1

[4]
Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.

Medicina (Kaunas). 2023-1-15

[5]
Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases.

Front Cardiovasc Med. 2022-9-7

[6]
Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.

J Transl Med. 2023-6-22

[7]
Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.

Eur J Med Res. 2024-1-3

[8]
Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.

Heart Surg Forum. 2023-10-25

[9]
Prediction of acute kidney injury in patients with liver cirrhosis using machine learning models: evidence from the MIMIC-III and MIMIC-IV.

Int Urol Nephrol. 2024-1

[10]
AKIML: An interpretable machine learning model for predicting acute kidney injury within seven days in critically ill patients based on a prospective cohort study.

Clin Chim Acta. 2024-6-1

引用本文的文献

[1]
Artificial intelligence models for predicting acute kidney injury in the intensive care unit: a systematic review of modeling methods, data utilization, and clinical applicability.

JAMIA Open. 2025-7-3

[2]
Machine Learning-Based Mortality Risk Prediction Model in Patients with Sepsis.

J Inflamm Res. 2025-5-19

[3]
Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Sci Rep. 2025-4-18

[4]
Utilizing deep learning-based causal inference to explore vancomycin's impact on continuous kidney replacement therapy necessity in blood culture-positive intensive care unit patients.

Microbiol Spectr. 2025-1-7

[5]
Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions.

Korean J Intern Med. 2024-11

[6]
Ensemble machine learning prediction of hyperuricemia based on a prospective health checkup population.

Front Physiol. 2024-4-11

本文引用的文献

[1]
Application Prospect of the SOFA Score and Related Modification Research Progress in Sepsis.

J Clin Med. 2023-5-16

[2]
Acute Kidney Injury.

Pediatr Rev. 2023-5-1

[3]
Derivation and validation of a risk score to predict acute kidney injury in critically ill cirrhotic patients.

Hepatol Res. 2023-8

[4]
The Sequential Organ Failure Assessment (SOFA) Score: has the time come for an update?

Crit Care. 2023-1-13

[5]
MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.

Shock. 2023-3-1

[6]
Immunoregulatory mechanism of acute kidney injury in sepsis: A Narrative Review.

Biomed Pharmacother. 2023-3

[7]
MIMIC-IV, a freely accessible electronic health record dataset.

Sci Data. 2023-1-3

[8]
Development and validation of a nomogram for the early prediction of acute kidney injury in hospitalized COVID-19 patients.

Front Public Health. 2022

[9]
Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.

Heart Lung. 2023

[10]
The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease.

Molecules. 2022-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索