Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
Neuroimage. 2022 Oct 15;260:119464. doi: 10.1016/j.neuroimage.2022.119464. Epub 2022 Jul 12.
Cerebrospinal fluid (CSF) in the paravascular spaces of the surface arteries (sPVS) is a vital pathway in brain waste clearance. Arterial pulsations may be the driving force of the paravascular flow, but its pulsatile pattern remains poorly characterized, and no clinically practical method for measuring its dynamics in the human brain is available. In this work, we introduce an imaging and quantification framework for in-vivo non-invasive assessment of pulsatile fluid dynamics in the sPVS. It used dynamic Diffusion-Weighted Imaging (dDWI) at a lower b-values of 150s/mm and retrospective gating to detect the slow flow of CSF while suppressing the fast flow of adjacent arterial blood. The waveform of CSF flow over a cardiac cycle was revealed by synchronizing the measurements with the heartbeat. A data-driven approach was developed to identify sPVS and allow automatic quantification of the whole-brain fluid waveforms. We applied dDWI to twenty-five participants aged 18-82 y/o. Results demonstrated that the fluid waveforms across the brain showed an explicit cardiac-cycle dependency, in good agreement with the vascular pumping hypothesis. Furthermore, the shape of the CSF waveforms closely resembled the pressure waveforms of the artery wall, suggesting that CSF dynamics is tightly related to artery wall mechanics. Finally, the CSF waveforms in aging participants revealed a strong age effect, with a significantly wider systolic peak observed in the older relative to younger participants. The peak widening may be associated with compromised vascular compliance and vessel wall stiffening in the older brain. Overall, the results demonstrate the feasibility, reproducibility, and sensitivity of dDWI for detecting sPVS fluid dynamics of the human brain. Our preliminary data suggest age-related alterations of the paravascular pumping. With an acquisition time of under six minutes, dDWI can be readily applied to study fluid dynamics in normal physiological conditions and cerebrovascular/neurodegenerative diseases.
脑脊髓液(CSF)在表面动脉的脉管周围空间(sPVS)是大脑废物清除的重要途径。动脉搏动可能是脉管流的驱动力,但它的搏动模式仍未得到很好的描述,也没有临床上可行的方法来测量人类大脑中 sPVS 的动力学。在这项工作中,我们引入了一种成像和量化框架,用于在体内无创评估 sPVS 中的脉动流体动力学。它使用较低的 b 值(150s/mm)的动态扩散加权成像(dDWI)和回顾性门控来检测 CSF 的缓慢流动,同时抑制相邻动脉血的快速流动。通过将测量结果与心跳同步,揭示了 CSF 流动在心动周期内的波形。开发了一种数据驱动的方法来识别 sPVS,并允许自动量化整个大脑的流体波形。我们应用 dDWI 对 25 名年龄在 18-82 岁的参与者进行了研究。结果表明,整个大脑的流体波形表现出明显的心动周期依赖性,与血管泵浦假说吻合良好。此外,CSF 波形的形状与动脉壁的压力波形非常相似,这表明 CSF 动力学与动脉壁力学密切相关。最后,老年参与者的 CSF 波形显示出强烈的年龄效应,与年轻参与者相比,老年参与者的收缩期峰值明显更宽。峰值变宽可能与老年大脑中血管顺应性降低和血管壁僵硬有关。总之,这些结果证明了 dDWI 检测人脑 sPVS 流体动力学的可行性、可重复性和敏感性。我们的初步数据表明,sPVS 泵浦与年龄相关。dDWI 的采集时间不到六分钟,因此可以很容易地应用于研究正常生理条件下和血管性/神经退行性疾病中的流体动力学。