Suppr超能文献

TRACC-PHYSIO:时域分辨率对齐互相关法,用于估计动态磁共振成像中的生理耦合和时间延迟。

TRACC-PHYSIO: Time-domain Resolution-Aligned Cross-Correlation to estimate PHYSIOlogical coupling and time delays in dynamic MRI.

作者信息

Wright Adam M, Zhang Jianing, Tong Yunjie, Wen Qiuting

机构信息

Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.

Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA.

出版信息

bioRxiv. 2025 Aug 2:2025.08.01.668145. doi: 10.1101/2025.08.01.668145.

Abstract

Physiological brain pulsations, primarily driven by cardiac and respiratory activity, play a key role in driving neurofluid circulation and waste clearance. Capturing the temporal dynamics of cardiac- and respiratory-driven brain pulsations (0.2-1.5 Hz) requires fast imaging with TRs near 100 ms, which is often unachievable in functional MRI or dynamic diffusion MRI. As a result, valuable physiological information remains hidden in these datasets. Here, we introduce TRACC-PHYSIO, a time-domain analytical framework designed to quantify physiological coupling and pulse time delays in dynamic MRI without requiring a fast acquisition. TRACC-PHYSIO uses cross-correlation to detect co-fluctuations between slowly sampled dynamic MRI data and simultaneously recorded physiological waveforms. It measures two key metrics: the peak Coupling Coefficient (peak CorrCoeff), quantifying the strength of co-fluctuations, and the TimeDelay, reflecting the relative arrival time of the physiological impulse in the brain with millisecond-level temporal resolution. The primary aim of this study is to validate TRACC-PHYSIO through systematic simulations that model realistic dynamic MR signals with mixed physiological components. We comprehensively evaluate TRACC-PHYSIO's performance under a wide range of conditions, including varying cardiac-to-respiratory composition ratios, TRs, and acquisition times. Results demonstrate that TRACC-PHYSIO can robustly assess coupling strengths and time delays for both cardiac (TRACC-Cardiac) and respiratory (TRACC-Respiratory) components, even in datasets with long TRs up to 3 seconds. By enabling a reliable time-domain coupling analysis, TRACC-PHYSIO opens new avenues for revealing brain pulsation mechanisms and elucidating the physiological drivers of neurofluid dynamics in health and disease. This stimulation study provides a valuable reference for interpreting TRACC-PHYSIO results and understanding associated uncertainties in future applications.

摘要

生理性脑搏动主要由心脏和呼吸活动驱动,在推动神经液循环和废物清除中起关键作用。捕捉由心脏和呼吸驱动的脑搏动(0.2 - 1.5赫兹)的时间动态需要快速成像,重复时间(TR)接近100毫秒,这在功能磁共振成像或动态扩散磁共振成像中通常无法实现。因此,有价值的生理信息仍隐藏在这些数据集中。在此,我们引入TRACC - PHYSIO,这是一个时域分析框架,旨在量化动态磁共振成像中的生理耦合和脉冲时间延迟,而无需快速采集。TRACC - PHYSIO使用互相关来检测缓慢采样的动态磁共振成像数据与同时记录的生理波形之间的协同波动。它测量两个关键指标:峰值耦合系数(峰值相关系数),用于量化协同波动的强度;以及时间延迟,反映生理冲动在大脑中到达的相对时间,具有毫秒级的时间分辨率。本研究的主要目的是通过系统模拟来验证TRACC - PHYSIO,这些模拟对具有混合生理成分的现实动态磁共振信号进行建模。我们在广泛的条件下全面评估TRACC - PHYSIO的性能,包括不同的心脏与呼吸成分比例、重复时间和采集时间。结果表明,即使在重复时间长达3秒的数据集里,TRACC - PHYSIO也能稳健地评估心脏(TRACC - 心脏)和呼吸(TRACC - 呼吸)成分的耦合强度和时间延迟。通过实现可靠的时域耦合分析,TRACC - PHYSIO为揭示脑搏动机制以及阐明健康和疾病状态下神经液动力学的生理驱动因素开辟了新途径。这项模拟研究为解释TRACC - PHYSIO结果以及理解未来应用中的相关不确定性提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a8d/12324465/427b97f7f762/nihpp-2025.08.01.668145v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验