Nazeri Arash, Hosseini Helia, Dehkharghanian Taher, Lindsay Kevin E, LaMontagne Pamela, Shimony Joshua S, Benzinger Tammie L S, Sotiras Aristeidis
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States.
University Health Network, Toronto, Ontario, Canada.
Imaging Neurosci (Camb). 2025;3. doi: 10.1162/imag_a_00473. Epub 2025 Feb 18.
The circulation of cerebrospinal fluid (CSF) is essential for maintaining brain homeostasis and clearance, and impairments in its flow can lead to various brain disorders. Recent studies have shown that CSF effective motility can be interrogated using low b-value diffusion magnetic resonance imaging (low-b dMRI). Nevertheless, the spatial organization of intracranial CSF flow dynamics remains largely elusive. Here, we developed a whole-brain voxel-based analysis framework, termed CSF pseudo-diffusion spatial statistics ( ), to examine CSF mean pseudo-diffusivity , a measure of CSF flow magnitude derived from low-b dMRI. We showed that intracranial CSF demonstrates characteristic covariance patterns by employing seed-based correlation analysis. Next, we applied non-negative matrix factorization analysis to further elucidate the covariance patterns of CSF in a hypothesis-free, data-driven way. We identified 10 distinct CSF compartments with high reproducibility and reliability, reflected by a high mean adjusted Rand index with a low standard deviation (0.82 [SD: 0.018]) in split-half analyses of the discovery multimodal aging dataset (n = 187). The identified patterns displayed similar across three replication datasets. In discovery and replication multimodal aging cohorts (unique n = 264), our study revealed that age, sex, brain atrophy, ventricular anatomy, and cerebral perfusion differentially influence across these CSF spaces. Notably, of the 35 individuals exhibiting anomalous CSF flow patterns, five displayed clinically consequential incidental findings on multimodal neuroradiological examinations, which were not observed in other participants . Our work sets forth a new paradigm to study CSF flow, with potential applications in clinical settings.
脑脊液(CSF)的循环对于维持脑内环境稳定和清除功能至关重要,其流动受损可导致各种脑部疾病。最近的研究表明,使用低b值扩散磁共振成像(low-b dMRI)可以研究脑脊液的有效运动性。然而,颅内脑脊液流动动力学的空间组织在很大程度上仍然难以捉摸。在此,我们开发了一种基于全脑体素的分析框架,称为脑脊液伪扩散空间统计(CSF pseudo-diffusion spatial statistics, CSFPSS),以检查脑脊液平均伪扩散系数( ),这是一种从低b值dMRI得出的脑脊液流动幅度的度量。我们通过基于种子的相关分析表明,颅内脑脊液表现出特征性的协方差模式。接下来,我们应用非负矩阵分解分析,以一种无假设、数据驱动的方式进一步阐明脑脊液的协方差模式。我们确定了10个不同的脑脊液腔室,具有高重现性和可靠性,在发现多模态衰老数据集(n = 187)的对半分析中,平均调整兰德指数较高,标准差较低(0.82 [标准差:0.018])。在三个复制数据集中,所识别的模式显示出相似的 。在发现和复制多模态衰老队列(唯一n = 264)中,我们的研究表明,年龄、性别、脑萎缩、脑室解剖结构和脑灌注在这些脑脊液空间中对 有不同的影响。值得注意的是,在35名脑脊液流动模式异常的个体中,有5名在多模态神经放射学检查中出现了具有临床意义的偶然发现,而其他参与者未观察到这些发现。我们的工作提出了一种研究脑脊液流动的新范式,在临床环境中具有潜在应用价值。