Suppr超能文献

具有解耦传感机制的多模态传感器。

Multimodal Sensors with Decoupled Sensing Mechanisms.

机构信息

School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Adv Sci (Weinh). 2022 Sep;9(26):e2202470. doi: 10.1002/advs.202202470. Epub 2022 Jul 14.

Abstract

Highly sensitive and multimodal sensors have recently emerged for a wide range of applications, including epidermal electronics, robotics, health-monitoring devices and human-machine interfaces. However, cross-sensitivity prevents accurate measurements of the target input signals when a multiple of them are simultaneously present. Therefore, the selection of the multifunctional materials and the design of the sensor structures play a significant role in multimodal sensors with decoupled sensing mechanisms. Hence, this review article introduces varying methods to decouple different input signals for realizing truly multimodal sensors. Early efforts explore different outputs to distinguish the corresponding input signals applied to the sensor in sequence. Next, this study discusses the methods for the suppression of the interference, signal correction, and various decoupling strategies based on different outputs to simultaneously detect multiple inputs. The recent insights into the materials' properties, structure effects, and sensing mechanisms in recognition of different input signals are highlighted. The presence of the various decoupling methods also helps avoid the use of complicated signal processing steps and allows multimodal sensors with high accuracy for applications in bioelectronics, robotics, and human-machine interfaces. Finally, current challenges and potential opportunities are discussed in order to motivate future technological breakthroughs.

摘要

高灵敏度、多模态传感器最近已经广泛应用于各种领域,包括表皮电子、机器人、健康监测设备和人机接口。然而,当多个目标输入信号同时存在时,交叉敏感性会导致对目标输入信号的测量不准确。因此,选择多功能材料和设计传感器结构对于具有解耦传感机制的多模态传感器至关重要。因此,本文介绍了各种方法来解耦不同的输入信号,以实现真正的多模态传感器。早期的研究工作探索了不同的输出,以依次区分施加到传感器上的相应输入信号。接下来,本文讨论了基于不同输出的抑制干扰、信号修正和各种解耦策略的方法,以同时检测多个输入。强调了不同输入信号识别中材料特性、结构效应和传感机制的最新进展。各种解耦方法的存在还有助于避免使用复杂的信号处理步骤,并为生物电子学、机器人和人机接口等应用提供高精度的多模态传感器。最后,讨论了当前的挑战和潜在的机遇,以激发未来的技术突破。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e26/9475538/a63d5eff8425/ADVS-9-2202470-g008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验