Suppr超能文献

前列腺腺癌血管生成的新型转录组学特征可预测临床结局、肿瘤微环境和治疗反应。

The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma.

机构信息

Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.

出版信息

Mol Med. 2022 Jul 14;28(1):78. doi: 10.1186/s10020-022-00504-6.

Abstract

Angiogenesis plays the critical roles in promoting tumor progression, aggressiveness, and metastasis. Although few studies have revealed some angiogenesis-related genes (ARGs) could serve as prognosis-related biomarkers for the prostate cancer (PCa), the integrated role of ARGs has not been systematically studied. The RNA-sequencing data and clinical information of prostate adenocarcinoma (PRAD) were downloaded from The Cancer Genome Atlas (TCGA) as discovery dataset. Twenty-three ARGs in total were identified to be correlated with prognosis of PRAD by the univariate Cox regression analysis, and a 19-ARG signature was further developed with significant correlation with the disease-free survival (DFS) of PRAD by the least absolute shrinkage and selection operator (LASSO) Cox regression with tenfold cross-validation. The signature stratified PRAD patients into high- and low-ARGs signature score groups, and those with high ARGs signature score were associated with significantly poorer outcomes (median DFS: 62.71 months vs unreached, p < 0.0001). The predicting ability of ARGs signature was subsequently validated in two independent cohorts of GSE40272 & PRAD_MSKCC. Notably, the 19-ARG signature outperformed the typical clinical features or each involved ARG in predicting the DFS of PRAD. Furthermore, a prognostic nomogram was constructed with three independent prognostic factors, including the ARGs signature, T stage and Gleason score. The predicted results from the nomogram (C-index = 0.799, 95%CI = 0.744-0.854) matched well with the observed outcomes, which was verified by the calibration curves. The values of area under receiver operating characteristic curve (AUC) for DFS at 1-, 3-, 5-year for the nomogram were 0.82, 0.83, and 0.83, respectively, indicating the performance of nomogram model is of reasonably high accuracy and robustness. Moreover, functional enrichment analysis demonstrated the potential targets of E2F targets, G2M checkpoint pathways, and cell cycle pathways to suppress the PRAD progression. Of note, the high-risk PRAD patients were more sensitive to immune therapies, but Treg might hinder benefits from immunotherapies. Additionally, this established tool also could predict response to neoadjuvant androgen deprivation therapy (ADT) and some chemotherapy drugs, such as cisplatin, paclitaxel, and docetaxel, etc. The novel ARGs signature, with prognostic significance, can further promote the application of targeted therapies in different stratifications of PCa patients.

摘要

血管生成在促进肿瘤进展、侵袭性和转移方面起着关键作用。虽然少数研究表明一些与血管生成相关的基因 (ARGs) 可以作为前列腺癌 (PCa) 的预后相关生物标志物,但 ARGs 的综合作用尚未得到系统研究。从癌症基因组图谱 (TCGA) 下载了前列腺腺癌 (PRAD) 的 RNA-seq 数据和临床信息作为发现数据集。通过单因素 Cox 回归分析,确定了总共 23 个 ARGs 与 PRAD 的预后相关,并且通过具有 10 倍交叉验证的最小绝对收缩和选择算子 (LASSO) Cox 回归进一步开发了与 PRAD 无复发生存 (DFS) 显著相关的 19-ARG 特征。该特征将 PRAD 患者分为高和低 ARG 特征评分组,具有高 ARG 特征评分的患者与明显较差的结局相关 (中位 DFS:62.71 个月与未达到,p < 0.0001)。随后在 GSE40272 和 PRAD_MSKCC 两个独立队列中验证了 ARGs 特征的预测能力。值得注意的是,19-ARG 特征在预测 PRAD 的 DFS 方面优于典型的临床特征或每个涉及的 ARG。此外,构建了一个包含三个独立预后因素的预后列线图,包括 ARGs 特征、T 分期和 Gleason 评分。列线图预测结果(C 指数=0.799,95%CI=0.744-0.854)与观察结果吻合良好,校准曲线也得到了验证。列线图在 1、3、5 年时用于 DFS 的接收者操作特征曲线 (AUC) 值分别为 0.82、0.83 和 0.83,表明列线图模型的性能具有相当高的准确性和稳健性。此外,功能富集分析表明,E2F 靶点、G2M 检查点途径和细胞周期途径的潜在靶点可能抑制 PRAD 的进展。值得注意的是,高危 PRAD 患者对免疫治疗更敏感,但 Treg 可能会阻碍免疫治疗的获益。此外,该工具还可以预测新辅助雄激素剥夺治疗 (ADT) 和某些化疗药物(如顺铂、紫杉醇和多西他赛等)的反应。具有预后意义的新型 ARGs 特征可进一步促进靶向治疗在不同 PCa 患者分层中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51da/9284787/5548aef29b2f/10020_2022_504_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验