Suppr超能文献

比较基于中红外光谱和超声的分析仪测量的人乳宏量营养素,以及机器学习在数据拟合中的应用。

Comparing human milk macronutrients measured using analyzers based on mid-infrared spectroscopy and ultrasound and the application of machine learning in data fitting.

机构信息

Department of Clinical Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.

出版信息

BMC Pregnancy Childbirth. 2022 Jul 14;22(1):562. doi: 10.1186/s12884-022-04891-w.

Abstract

OBJECTIVE

Fat, carbohydrates (mainly lactose) and protein in breast milk all provide indispensable benefits for the growth of newborns. The only source of nutrition in early infancy is breast milk, so the energy of breast milk is also crucial to the growth of infants. Some macronutrients composition in human breast milk varies greatly, which could affect its nutritional fulfillment to preterm infant needs. Therefore, rapid analysis of macronutrients (including lactose, fat and protein) and milk energy in breast milk is of clinical importance. This study compared the macronutrients results of a mid-infrared (MIR) analyzer and an ultrasound-based breast milk analyzer and unified the results by machine learning.

METHODS

This cross-sectional study included breastfeeding mothers aged 22-40 enrolled between November 2019 and February 2021. Breast milk samples (n = 546) were collected from 244 mothers (from Day 1 to Day 1086 postpartum). A MIR milk analyzer (BETTERREN Co., HMIR-05, SH, CHINA) and an ultrasonic milk analyzer (Honɡyanɡ Co,. HMA 3000, Hebei, CHINA) were used to determine the human milk macronutrient composition. A total of 465 samples completed the tests in both analyzers. The results of the ultrasonic method were mathematically converted using machine learning, while the Bland-Altman method was used to determine the limits of agreement (LOA) between the adjusted results of the ultrasonic method and MIR results.

RESULTS

The MIR and ultrasonic milk analyzer results were significantly different. The protein, fat, and energy determined using the MIR method were higher than those determined by the ultrasonic method, while lactose determined by the MIR method were lower (all p < 0.05). The consistency between the measured MIR and the adjusted ultrasound values was evaluated using the Bland-Altman analysis and the scatter diagram was generated to calculate the 95% LOA. After adjustments, 93.96% protein points (436 out of 465), 94.41% fat points (439 out of 465), 95.91% lactose points (446 out of 465) and 94.62% energy points (440 out of 465) were within the LOA range. The 95% LOA of protein, fat, lactose and energy were - 0.6 to 0.6 g/dl, -0.92 to 0.92 g/dl, -0.88 to 0.88 g/dl and - 40.2 to 40.4 kj/dl, respectively and clinically acceptable. The adjusted ultrasonic results were consistent with the MIR results, and LOA results were high (close to 95%).

CONCLUSIONS

While the results of the breast milk rapid analyzers using the two methods varied significantly, they could still be considered comparable after data adjustments using linear regression algorithm in machine learning. Machine learning methods can play a role in data fitting using different analyzers.

摘要

目的

母乳中的脂肪、碳水化合物(主要是乳糖)和蛋白质为新生儿的生长提供了不可或缺的益处。婴儿早期的唯一营养来源是母乳,因此母乳的能量对婴儿的生长也至关重要。人乳中某些宏量营养素的组成差异很大,这可能会影响其对早产儿需求的营养满足程度。因此,快速分析母乳中的宏量营养素(包括乳糖、脂肪和蛋白质)和能量具有重要的临床意义。本研究比较了中红外(MIR)分析仪和基于超声的母乳分析仪的宏量营养素结果,并通过机器学习对结果进行了统一。

方法

这是一项横断面研究,纳入了 2019 年 11 月至 2021 年 2 月期间 22-40 岁的母乳喂养母亲。共采集了 244 名母亲(产后第 1 天至第 1086 天)的 546 份母乳样本。使用 BETTERREN 公司的 MIR 奶分析仪(HMIR-05,SH,中国)和鸿翔公司的 HMA 3000 超声奶分析仪(河北,中国)来确定人乳的宏量营养素组成。共有 465 个样本在两种分析仪上都完成了测试。使用机器学习对超声法的结果进行数学转换,然后使用 Bland-Altman 法确定超声法调整结果与 MIR 结果的一致性限(LOA)。

结果

MIR 和超声奶分析仪的结果存在显著差异。MIR 法测定的蛋白质、脂肪和能量均高于超声法,而 MIR 法测定的乳糖则较低(均 P<0.05)。通过 Bland-Altman 分析评估了测量的 MIR 和调整后的超声值之间的一致性,并生成散点图来计算 95%的 LOA。经过调整,93.96%的蛋白质点(436 个中的 436 个)、94.41%的脂肪点(439 个中的 439 个)、95.91%的乳糖点(446 个中的 446 个)和 94.62%的能量点(440 个中的 440 个)均在 LOA 范围内。蛋白质、脂肪、乳糖和能量的 95%LOA 分别为-0.6 至 0.6 g/dl、-0.92 至 0.92 g/dl、-0.88 至 0.88 g/dl 和-40.2 至 40.4 kj/dl,临床可接受。调整后的超声结果与 MIR 结果一致,LOA 结果较高(接近 95%)。

结论

尽管两种方法的母乳快速分析仪结果差异显著,但在使用机器学习中的线性回归算法进行数据调整后,仍可认为它们是可比的。机器学习方法可以在使用不同分析仪时发挥数据拟合的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/9284806/0581568247ea/12884_2022_4891_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验