Zhang Bo, Ma Lin, Zhao Hui, Hao Yanlei, Fu Shujun, Wang Hong, Li Yuliang, Han Hongbin
School of Mathematics, Shandong University, Jinan, China.
Office of Human Resources, Peking University Health Science, Beijing, China.
Med Phys. 2022 Nov;49(11):7025-7037. doi: 10.1002/mp.15848. Epub 2022 Jul 26.
Hyperreflective dots (HRDs) can be observed in spectral domain optical coherence tomography (SD-OCT), which can provide a sensitive marker in the treatment decision process. Quantitative analyses of HRDs are the key to make appropriate decisions on observation, treatment, and retreatment. The purpose of this study is to automatically and accurately segment HRDs in SD-OCT B-scans with diabetic retinopathy (DR).
The authors propose an automatic segmentation algorithm of HRDs via focal priors and visual saliency. The algorithm is divided into three stages: segmentation of retinal layers, calculation of the multiscale local contrast saliency map, and adaptive threshold segmentation. First, a method based on improved graph search is used to segment retinal layers to obtain the region of interest (ROI) and the reflectivity estimation of the retinal pigment epithelium (RPE) layer; then, the multiscale local contrast saliency map is obtained by using a local contrast measure, which measures the dissimilarity between the current pixels and corresponding neighborhoods; finally, an adaptive threshold is applied to segment HRDs.
Experimental results on 20 SD-OCT B-scans demonstrate that our method is effective for HRDs segmentation. The average dice similarity coefficient (DSC) and detection accuracy are 71.12% and 85.07%, respectively.
The proposed method can accurately segment HRDs in SD-OCT B-scans with DR and outperforms current state-of-the-art methods. Our method can provide reliable HRDs segmentation to assist ophthalmologists in clinical diagnosis, treatment, disease monitoring, and progression.
在光谱域光学相干断层扫描(SD-OCT)中可观察到高反射点(HRDs),其可为治疗决策过程提供一个敏感标志物。对HRDs进行定量分析是在观察、治疗和再治疗方面做出恰当决策的关键。本研究的目的是在患有糖尿病视网膜病变(DR)的SD-OCT B扫描图像中自动且准确地分割HRDs。
作者提出一种基于焦点先验和视觉显著性的HRDs自动分割算法。该算法分为三个阶段:视网膜层分割、多尺度局部对比度显著性图计算以及自适应阈值分割。首先,使用一种基于改进图搜索的方法分割视网膜层,以获得感兴趣区域(ROI)和视网膜色素上皮(RPE)层的反射率估计;然后,通过使用局部对比度度量来获得多尺度局部对比度显著性图,该度量用于测量当前像素与其相应邻域之间的差异;最后,应用自适应阈值来分割HRDs。
对20幅SD-OCT B扫描图像的实验结果表明,我们的方法对于HRDs分割是有效的。平均骰子相似系数(DSC)和检测准确率分别为71.12%和85.07%。
所提出的方法能够在患有DR的SD-OCT B扫描图像中准确分割HRDs,并且优于当前的最先进方法。我们的方法能够提供可靠的HRDs分割,以协助眼科医生进行临床诊断、治疗、疾病监测和病情进展评估。