Suppr超能文献

糖尿病性黄斑水肿光学相干断层扫描中高反射点检测与定量算法

Algorithm for Detection and Quantification of Hyperreflective Dots on Optical Coherence Tomography in Diabetic Macular Edema.

作者信息

Huang Haifan, Zhu Liangjiu, Zhu Weifang, Lin Tian, Los Leonoor Inge, Yao Chenpu, Chen Xinjian, Chen Haoyu

机构信息

Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China.

Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

出版信息

Front Med (Lausanne). 2021 Aug 18;8:688986. doi: 10.3389/fmed.2021.688986. eCollection 2021.

Abstract

To develop an algorithm to detect and quantify hyperreflective dots (HRDs) on optical coherence tomography (OCT) in patients with diabetic macular edema (DME). Twenty OCTs (each OCT contains 128 b scans) from 20 patients diagnosed with DME were included in this study. Two types of HRDs, hard exudates and small HRDs (hypothesized to be activated microglia), were identified and labeled independently by two raters. An algorithm using deep learning technology was developed based on input (in total 2,560 OCT b scans) of manual labeling and differentiation of HRDs from rater 1. 4-fold cross-validation was used to train and validate the algorithm. Dice coefficient, intraclass coefficient (ICC), correlation coefficient, and Bland-Altman plot were used to evaluate agreement of the output parameters between two methods (either between two raters or between one rater and proposed algorithm). The Dice coefficients of total HRDs, hard exudates, and small HRDs area of the algorithm were 0.70 ± 0.10, 0.72 ± 0.11, and 0.46 ± 0.06, respectively. The correlations between rater 1 and proposed algorithm (range: 0.95-0.99, all < 0.001) were stronger than the correlations between the two raters (range: 0.84-0.96, all < 0.001) for all parameters. The ICCs were higher for all the parameters between rater 1 and proposed algorithm (range: 0.972-0.997) than those between the two raters (range: 0.860-0.953). Our proposed algorithm is a good tool to detect and quantify HRDs and can provide objective and repeatable information of OCT for DME patients in clinical practice and studies.

摘要

开发一种算法,用于检测和量化糖尿病性黄斑水肿(DME)患者光学相干断层扫描(OCT)上的高反射点(HRD)。本研究纳入了20例诊断为DME患者的20张OCT图像(每张OCT包含128次B扫描)。两名评估者独立识别并标记了两种类型的HRD,即硬性渗出物和小HRD(推测为活化的小胶质细胞)。基于评估者1对HRD的手动标记和区分的输入(总共2560次OCT B扫描),开发了一种使用深度学习技术的算法。采用4折交叉验证来训练和验证该算法。使用Dice系数、组内相关系数(ICC)、相关系数和Bland-Altman图来评估两种方法(两名评估者之间或一名评估者与所提出算法之间)输出参数的一致性。该算法的总HRD、硬性渗出物和小HRD面积的Dice系数分别为0.70±0.10、0.72±0.11和0.46±0.06。对于所有参数,评估者1与所提出算法之间的相关性(范围:0.95 - 0.99,均<0.001)强于两名评估者之间的相关性(范围:0.84 - 0.96,均<0.001)。评估者1与所提出算法之间所有参数的ICC(范围:0.972 - 0.997)高于两名评估者之间的ICC(范围:0.860 - 0.953)。我们提出的算法是检测和量化HRD的良好工具,可为临床实践和研究中的DME患者提供客观且可重复的OCT信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac02/8416345/b878527dd449/fmed-08-688986-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验