Suppr超能文献

用于不完整多视图聚类的图结构优化

Refining Graph Structure for Incomplete Multi-View Clustering.

作者信息

Li Xiang-Long, Chen Man-Sheng, Wang Chang-Dong, Lai Jian-Huang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2300-2313. doi: 10.1109/TNNLS.2022.3189763. Epub 2024 Feb 5.

Abstract

As a challenging problem, incomplete multi-view clustering (MVC) has drawn much attention in recent years. Most of the existing methods contain the feature recovering step inevitably to obtain the clustering result of incomplete multi-view datasets. The extra target of recovering the missing feature in the original data space or common subspace is difficult for unsupervised clustering tasks and could accumulate mistakes during the optimization. Moreover, the biased error is not taken into consideration in the previous graph-based methods. The biased error represents the unexpected change of incomplete graph structure, such as the increase in the intra-class relation density and the missing local graph structure of boundary instances. It would mislead those graph-based methods and degrade their final performance. In order to overcome these drawbacks, we propose a new graph-based method named Graph Structure Refining for Incomplete MVC (GSRIMC). GSRIMC avoids recovering feature steps and just fully explores the existing subgraphs of each view to produce superior clustering results. To handle the biased error, the biased error separation is the core step of GSRIMC. In detail, GSRIMC first extracts basic information from the precomputed subgraph of each view and then separates refined graph structure from biased error with the help of tensor nuclear norm. Besides, cross-view graph learning is proposed to capture the missing local graph structure and complete the refined graph structure based on the complementary principle. Extensive experiments show that our method achieves better performance than other state-of-the-art baselines.

摘要

作为一个具有挑战性的问题,不完全多视图聚类(MVC)近年来备受关注。大多数现有方法不可避免地包含特征恢复步骤,以获得不完全多视图数据集的聚类结果。在原始数据空间或公共子空间中恢复缺失特征这个额外目标对于无监督聚类任务来说很困难,并且在优化过程中可能会累积错误。此外,先前基于图的方法没有考虑偏差误差。偏差误差表示不完全图结构的意外变化,例如类内关系密度的增加和边界实例局部图结构的缺失。这会误导那些基于图的方法并降低它们的最终性能。为了克服这些缺点,我们提出了一种新的基于图的方法,名为用于不完全MVC的图结构精炼(GSRIMC)。GSRIMC避免了特征恢复步骤,而是充分探索每个视图的现有子图以产生更好的聚类结果。为了处理偏差误差,偏差误差分离是GSRIMC的核心步骤。具体来说,GSRIMC首先从每个视图的预计算子图中提取基本信息,然后借助张量核范数将精炼的图结构与偏差误差分离。此外,还提出了跨视图图学习,以捕获缺失的局部图结构,并基于互补原则完成精炼的图结构。大量实验表明,我们的方法比其他现有最先进的基线方法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验