Suppr超能文献

基于机器学习的定量超声技术在组织分化中的应用。

Machine learning-enabled quantitative ultrasound techniques for tissue differentiation.

机构信息

Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK.

School of Computing, Edinburgh Napier University, Merchiston Campus, Edinburgh, UK.

出版信息

J Med Ultrason (2001). 2022 Oct;49(4):517-528. doi: 10.1007/s10396-022-01230-6. Epub 2022 Jul 15.

Abstract

PURPOSE

Quantitative ultrasound (QUS) infers properties about tissue microstructure from backscattered radio-frequency ultrasound data. This paper describes how to implement the most practical QUS parameters using an ultrasound research system for tissue differentiation.

METHODS

This study first validated chicken liver and gizzard muscle as suitable acoustic phantoms for human brain and brain tumour tissues via measurement of the speed of sound and acoustic attenuation. A total of thirteen QUS parameters were estimated from twelve samples, each using data obtained with a transducer with a frequency of 5-11 MHz. Spectral parameters, i.e., effective scatterer diameter and acoustic concentration, were calculated from the backscattered power spectrum of the tissue, and echo envelope statistics were estimated by modelling the scattering inside the tissue as a homodyned K-distribution, yielding the scatterer clustering parameter α and the structure parameter κ. Standard deviation and higher-order moments were calculated from the echogenicity value assigned in conventional B-mode images.

RESULTS

The k-nearest neighbours algorithm was used to combine those parameters, which achieved 94.5% accuracy and 0.933 F1-score.

CONCLUSION

We were able to generate classification parametric images in near-real-time speed as a potential diagnostic tool in the operating room for the possible use for human brain tissue characterisation.

摘要

目的

超声定量(QUS)通过对回波射频超声数据的分析来推断组织微观结构的特性。本文描述了如何使用超声研究系统实现最实用的 QUS 参数,以实现组织分化。

方法

本研究首先通过测量声速和声衰减,验证了鸡肝和鸡内金作为人脑和脑肿瘤组织的合适声学模拟物。使用频率为 5-11MHz 的换能器从 12 个样本中估计了 13 个 QUS 参数。从组织的回波功率谱中计算了谱参数,即有效散射体直径和声浓度,通过将组织内的散射建模为同源 K 分布来估计回声包络统计参数,得到散射体聚类参数α和结构参数κ。从常规 B 模式图像中分配的回声强度值中计算标准偏差和高阶矩。

结果

使用 k-最近邻算法对这些参数进行组合,其准确率为 94.5%,F1 得分为 0.933。

结论

我们能够以接近实时的速度生成分类参数图像,作为手术室中可能用于人脑组织特征分析的潜在诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b11/9640462/64daca0a5f80/10396_2022_1230_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验