Suppr超能文献

公众对医疗保健人工智能伦理问题的看法:系统评价方案。

Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review.

机构信息

Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.

出版信息

Syst Rev. 2022 Jul 15;11(1):142. doi: 10.1186/s13643-022-02012-4.

Abstract

BACKGROUND

In recent years, innovations in artificial intelligence (AI) have led to the development of new healthcare AI (HCAI) technologies. Whilst some of these technologies show promise for improving the patient experience, ethicists have warned that AI can introduce and exacerbate harms and wrongs in healthcare. It is important that HCAI reflects the values that are important to people. However, involving patients and publics in research about AI ethics remains challenging due to relatively limited awareness of HCAI technologies. This scoping review aims to map how the existing literature on publics' views on HCAI addresses key issues in AI ethics and governance.

METHODS

We developed a search query to conduct a comprehensive search of PubMed, Scopus, Web of Science, CINAHL, and Academic Search Complete from January 2010 onwards. We will include primary research studies which document publics' or patients' views on machine learning HCAI technologies. A coding framework has been designed and will be used capture qualitative and quantitative data from the articles. Two reviewers will code a proportion of the included articles and any discrepancies will be discussed amongst the team, with changes made to the coding framework accordingly. Final results will be reported quantitatively and qualitatively, examining how each AI ethics issue has been addressed by the included studies.

DISCUSSION

Consulting publics and patients about the ethics of HCAI technologies and innovations can offer important insights to those seeking to implement HCAI ethically and legitimately. This review will explore how ethical issues are addressed in literature examining publics' and patients' views on HCAI, with the aim of determining the extent to which publics' views on HCAI ethics have been addressed in existing research. This has the potential to support the development of implementation processes and regulation for HCAI that incorporates publics' values and perspectives.

摘要

背景

近年来,人工智能(AI)的创新导致了新的医疗保健 AI(HCAI)技术的发展。虽然这些技术中的一些显示出改善患者体验的潜力,但伦理学家警告说,AI 可能会在医疗保健中引入和加剧伤害和错误。HCAI 反映对人们重要的价值观非常重要。然而,由于对 HCAI 技术的认识相对有限,让患者和公众参与有关 AI 伦理的研究仍然具有挑战性。本范围审查旨在绘制现有关于公众对 HCAI 的看法的文献如何解决 AI 伦理和治理中的关键问题。

方法

我们开发了一个搜索查询,以对 PubMed、Scopus、Web of Science、CINAHL 和 Academic Search Complete 自 2010 年 1 月以来的文献进行全面搜索。我们将包括记录公众或患者对机器学习 HCAI 技术的看法的原始研究。设计了一个编码框架,用于从文章中捕获定性和定量数据。两位审稿人将对纳入的部分文章进行编码,如果有任何差异,将在团队中进行讨论,并相应地对编码框架进行修改。最终结果将以定量和定性的方式报告,检查纳入的研究如何解决每个 AI 伦理问题。

讨论

咨询公众和患者对 HCAI 技术和创新的伦理看法,可以为那些寻求以合乎道德和合法的方式实施 HCAI 的人提供重要的见解。本审查将探讨在审查公众和患者对 HCAI 的看法的文献中如何解决伦理问题,目的是确定公众对 HCAI 伦理的看法在现有研究中得到了多大程度的解决。这有可能支持制定将公众的价值观和观点纳入其中的 HCAI 实施流程和监管。

相似文献

2
Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods.
Int J Med Inform. 2024 Jun;186:105417. doi: 10.1016/j.ijmedinf.2024.105417. Epub 2024 Mar 22.
3
Legal concerns in health-related artificial intelligence: a scoping review protocol.
Syst Rev. 2022 Jun 17;11(1):123. doi: 10.1186/s13643-022-01939-y.
5
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
Front Psychol. 2023 Jan 17;13:971044. doi: 10.3389/fpsyg.2022.971044. eCollection 2022.
7
Ethical, legal, and social considerations of AI-based medical decision-support tools: A scoping review.
Int J Med Inform. 2022 May;161:104738. doi: 10.1016/j.ijmedinf.2022.104738. Epub 2022 Mar 14.
9
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.

本文引用的文献

1
Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review.
Lancet Digit Health. 2021 Sep;3(9):e599-e611. doi: 10.1016/S2589-7500(21)00132-1.
2
Stand-alone artificial intelligence - The future of breast cancer screening?
Breast. 2020 Feb;49:254-260. doi: 10.1016/j.breast.2019.12.014. Epub 2020 Jan 2.
4
On the ethics of algorithmic decision-making in healthcare.
J Med Ethics. 2020 Mar;46(3):205-211. doi: 10.1136/medethics-2019-105586. Epub 2019 Nov 20.
5
The ethical, legal and social implications of using artificial intelligence systems in breast cancer care.
Breast. 2020 Feb;49:25-32. doi: 10.1016/j.breast.2019.10.001. Epub 2019 Oct 11.
6
Dissecting racial bias in an algorithm used to manage the health of populations.
Science. 2019 Oct 25;366(6464):447-453. doi: 10.1126/science.aax2342.
8
Machine Meets Biology: a Primer on Artificial Intelligence in Cardiology and Cardiac Imaging.
Curr Cardiol Rep. 2018 Oct 18;20(12):139. doi: 10.1007/s11886-018-1074-8.
9
Machine learning: Trends, perspectives, and prospects.
Science. 2015 Jul 17;349(6245):255-60. doi: 10.1126/science.aaa8415.
10
Guidance for conducting systematic scoping reviews.
Int J Evid Based Healthc. 2015 Sep;13(3):141-6. doi: 10.1097/XEB.0000000000000050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验