Suppr超能文献

量子多体系统的能隙指数

Gappability Index for Quantum Many-Body Systems.

作者信息

Yao Yuan, Oshikawa Masaki, Furusaki Akira

机构信息

Condensed Matter Theory Laboratory, RIKEN CPR, Wako, Saitama 351-0198, Japan.

Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

出版信息

Phys Rev Lett. 2022 Jul 1;129(1):017204. doi: 10.1103/PhysRevLett.129.017204.

Abstract

We propose an index I_{G} which characterizes the degree of gappability, namely the difficulty to induce a unique ground state with a nonvanishing excitation gap, in the presence of a symmetry G. I_{G} represents the dimension of the subspace of ambient uniquely gapped theories in the entire G-invariant "theory space." The celebrated Lieb-Schultz-Mattis theorem corresponds, in our formulation, to the case I_{G}=0 (completely ingappable) for the symmetry G including the lattice translation symmetry. We illustrate the usefulness of the index by discussing the phase diagram of spin-1/2 antiferromagnets in various dimensions, which do not necessarily have the translation symmetry.

摘要

我们提出了一个指标(I_{G}),它表征了能隙性的程度,即在存在对称性(G)的情况下,诱导出具有非零激发能隙的唯一基态的难度。(I_{G})表示整个(G)不变的“理论空间”中环境唯一能隙理论子空间的维度。著名的Lieb-Schultz-Mattis定理在我们的表述中对应于对称性(G)(包括晶格平移对称性)下(I_{G}=0)(完全无能隙)的情况。我们通过讨论各种维度下自旋-1/2反铁磁体的相图来说明该指标的有用性,这些反铁磁体不一定具有平移对称性。

相似文献

1
Gappability Index for Quantum Many-Body Systems.
Phys Rev Lett. 2022 Jul 1;129(1):017204. doi: 10.1103/PhysRevLett.129.017204.
2
Lieb-Schultz-Mattis Theorem for 1D Quantum Magnets with Antiunitary Translation and Inversion Symmetries.
Phys Rev Lett. 2024 Sep 27;133(13):136705. doi: 10.1103/PhysRevLett.133.136705.
3
Lieb-Schultz-Mattis Theorem in Open Quantum Systems.
Phys Rev Lett. 2024 Feb 16;132(7):070402. doi: 10.1103/PhysRevLett.132.070402.
4
Twisted Boundary Condition and Lieb-Schultz-Mattis Ingappability for Discrete Symmetries.
Phys Rev Lett. 2021 May 28;126(21):217201. doi: 10.1103/PhysRevLett.126.217201.
5
Lieb-Schultz-Mattis Theorem in Higher Dimensions from Approximate Magnetic Translation Symmetry.
Phys Rev Lett. 2021 Dec 3;127(23):237204. doi: 10.1103/PhysRevLett.127.237204.
6
Anomaly Matching and Symmetry-Protected Critical Phases in SU(N) Spin Systems in 1+1 Dimensions.
Phys Rev Lett. 2019 Nov 1;123(18):180201. doi: 10.1103/PhysRevLett.123.180201.
7
Chiral spin liquid wave function and the Lieb-Schultz-Mattis theorem.
Phys Rev Lett. 2003 Dec 19;91(25):257005. doi: 10.1103/PhysRevLett.91.257005. Epub 2003 Dec 17.
8
Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14551-6. doi: 10.1073/pnas.1514665112. Epub 2015 Nov 10.
9
Universal construction of order parameters for translation-invariant quantum lattice systems with symmetry-breaking order.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):020102. doi: 10.1103/PhysRevE.86.020102. Epub 2012 Aug 15.
10
Topological approach to quantum liquid ground states on geometrically frustrated Heisenberg antiferromagnets.
J Phys Condens Matter. 2020 Apr 17;32(16):165805. doi: 10.1088/1361-648X/ab670f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验