Donvil Brecht, Muratore-Ginanneschi Paolo
University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, FIN-00014, Helsinki, Finland.
Institute for Complex Quantum Systems and IQST, Ulm University, Albert-Einstein-Allee 11, D-89069, Ulm, Germany.
Nat Commun. 2022 Jul 16;13(1):4140. doi: 10.1038/s41467-022-31533-8.
Master equations are one of the main avenues to study open quantum systems. When the master equation is of the Lindblad-Gorini-Kossakowski-Sudarshan form, its solution can be "unraveled in quantum trajectories" i.e., represented as an average over the realizations of a Markov process in the Hilbert space of the system. Quantum trajectories of this type are both an element of quantum measurement theory as well as a numerical tool for systems in large Hilbert spaces. We prove that general time-local and trace-preserving master equations also admit an unraveling in terms of a Markov process in the Hilbert space of the system. The crucial ingredient is to weigh averages by a probability pseudo-measure which we call the "influence martingale". The influence martingale satisfies a 1d stochastic differential equation enslaved to the ones governing the quantum trajectories. We thus extend the existing theory without increasing the computational complexity.
主方程是研究开放量子系统的主要途径之一。当主方程具有林德布拉德 - 戈里尼 - 科萨克夫斯基 - 苏达尚形式时,其解可以“在量子轨迹中展开”,即表示为系统希尔伯特空间中马尔可夫过程实现的平均值。这种类型的量子轨迹既是量子测量理论的一个元素,也是大希尔伯特空间中系统的一种数值工具。我们证明,一般的时间局部且保持迹的主方程也允许在系统的希尔伯特空间中根据马尔可夫过程进行展开。关键要素是通过一种我们称为“影响鞅”的概率伪测度来加权平均值。影响鞅满足一个一维随机微分方程,该方程从属于控制量子轨迹的方程。因此,我们在不增加计算复杂度的情况下扩展了现有理论。