MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
Department of Mathematics and Computational Sciences, Széchenyi István University, Győr, 9026, Hungary.
Sci Rep. 2023 Mar 10;13(1):4034. doi: 10.1038/s41598-023-30840-4.
The Kibble-Zurek mechanism describes defect production due to non-adiabatic passage through a critical point. Here we study its variant from ramping the environment temperature to a critical point. We find that the defect density scales as [Formula: see text] or [Formula: see text] for thermal or quantum critical points, respectively, in terms of the usual critical exponents and [Formula: see text] the speed of the drive. Both scalings describe reduced defect density compared to conventional Kibble-Zurek mechanism, which stems from the enhanced relaxation due to bath-system interaction. Ramping to the quantum critical point is investigated by studying the Lindblad equation for the transverse field Ising chain in the presence of thermalizing bath, with couplings to environment obeying detailed balance, confirming the predicted scaling. The von-Neumann or the system-bath entanglement entropy follows the same scaling. Our results are generalized to a large class of dissipative systems with power-law energy dependent bath spectral densities as well.
凯布勒-祖雷克机制描述了由于非绝热通过临界点而导致的缺陷产生。在这里,我们研究了通过将环境温度斜坡上升到临界点的变体。我们发现,根据通常的临界指数,缺陷密度分别以[公式:见正文]或[公式:见正文]的形式缩放,其中[公式:见正文]是驱动速度。与传统的凯布勒-祖雷克机制相比,这两种标度都描述了缺陷密度的降低,这源于由于浴-系统相互作用导致的增强的弛豫。通过研究存在热化浴的横向场伊辛链的林德布莱德方程来研究斜坡到量子临界点的情况,其中环境的耦合满足详细平衡,这证实了预测的标度。冯·诺依曼或系统-浴纠缠熵遵循相同的标度。我们的结果也推广到一大类具有幂律能量相关浴谱密度的耗散系统。