Suppr超能文献

深度学习在超声弹性成像中的应用:综述。

Deep learning in ultrasound elastography imaging: A review.

机构信息

Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.

Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.

出版信息

Med Phys. 2022 Sep;49(9):5993-6018. doi: 10.1002/mp.15856. Epub 2022 Jul 30.

Abstract

It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayered perceptron, convolutional neural network, and recurrent neural network, are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected.

摘要

已知组织力学性质的变化与某些疾病的发生和进展有关。超声弹性成像是一种利用超声成像来描述组织硬度的技术,方法是使用准静态弹性成像或自然器官脉动弹性成像测量组织应变,或者使用动态弹性成像追踪由源或自然振动引起的传播剪切波。近年来,深度学习开始出现在超声弹性成像研究中。在这篇综述中,描述了计算机视觉领域中的几种常见的深度学习框架,如多层感知器、卷积神经网络和递归神经网络。然后,根据算法开发和临床诊断,回顾了利用这些深度学习技术在超声弹性成像方面的最新进展。最后,对深度学习在超声弹性成像中的当前挑战和未来发展进行了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验