Suppr超能文献

用于蒙面人脸识别的VGG16-随机傅里叶混合模型。

VGG16-random fourier hybrid model for masked face recognition.

作者信息

Sikha O K, Bharath Bandla

机构信息

Department of Computer Science & Engineering Amrita School of Engineering, Coimbatore Amrita Vishwa Vidyapeetham, Coimbatore, India.

出版信息

Soft comput. 2022;26(22):12795-12810. doi: 10.1007/s00500-022-07289-0. Epub 2022 Jul 10.

Abstract

With the recent COVID-19 pandemic, wearing masks has become a necessity in our daily lives. People are encouraged to wear masks to protect themselves from the outside world and thus from infection with COVID-19. The presence of masks raised serious concerns about the accuracy of existing facial recognition systems since most of the facial features are obscured by the mask. To address these challenges, a new method for masked face recognition is proposed that combines a cropping-based approach (upper half of the face) with an improved VGG-16 architecture. The finest features from the un-occluded facial region are extracted using a transfer learned VGG-16 model (Forehead and eyes). The optimal cropping ratio is investigated to give an enhanced feature representation for recognition. To avoid the overhead of bias, the obtained feature vector is mapped into a lower-dimensional feature representation using a Random Fourier Feature extraction module. Comprehensive experiments on the Georgia Tech Face Dataset, Head Pose Image Dataset, and Face Dataset by Robotics Lab show that the proposed approach outperforms other state-of-the-art approaches for masked face recognition.

摘要

随着近期新冠疫情的爆发,戴口罩已成为我们日常生活中的一项必需品。人们被鼓励佩戴口罩以保护自己免受外界影响,从而预防感染新冠病毒。口罩的出现引发了人们对现有面部识别系统准确性的严重担忧,因为大部分面部特征都被口罩遮挡住了。为应对这些挑战,提出了一种新的蒙面人脸识别方法,该方法将基于裁剪的方法(面部上半部分)与改进的VGG - 16架构相结合。使用迁移学习的VGG - 16模型(额头和眼睛)从未被遮挡的面部区域提取最精细的特征。研究了最佳裁剪比例,以提供增强的特征表示用于识别。为避免偏差带来的开销,使用随机傅里叶特征提取模块将获得的特征向量映射到低维特征表示中。在佐治亚理工学院人脸数据集、头部姿态图像数据集以及机器人实验室的人脸数据集上进行的综合实验表明,所提出的方法在蒙面人脸识别方面优于其他现有最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1df/9271555/c850a9424954/500_2022_7289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验