Suppr超能文献

LMCD-OR:用于口腔放射学的大规模多层次分类诊断数据集。

LMCD-OR: a large-scale, multilevel categorized diagnostic dataset for oral radiography.

机构信息

Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, 325000, China.

The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325001, China.

出版信息

J Transl Med. 2024 Oct 14;22(1):930. doi: 10.1186/s12967-024-05741-3.

Abstract

In recent years, digital dentistry has increasingly utilized advanced image analysis techniques, such as image classification and disease diagnosis, to improve clinical outcomes. Despite these advances, the lack of comprehensive benchmark datasets is a significant barrier. To address this gap, our research team develop LMCD-OR, a substantial collection of oral radiograph images designed to support extensive artificial intelligence (AI)-driven diagnostics. LMCD-OR comprises 3,818 digital imaging and communications in medicine (DICOM) oral X-ray images from local medical institutions that are meticulously annotated to provide broad category information for both primary dental outpatient services and detailed secondary disease diagnoses. This dataset is engineered to train and validate multiclassification models to improve the precision and scope of oral disease diagnostics. To ensure robust dataset validation, we employ four cutting-edge visual neural network classification models as benchmarks. These models are tested against rigorous performance metrics, demonstrating the ability of the dataset to support advanced image classification and disease diagnosis tasks. LMCD-OR is publicly available at http://dentaldataset.zeroacademy.net .

摘要

近年来,数字牙科越来越多地利用先进的图像分析技术,如图像分类和疾病诊断,以提高临床效果。尽管取得了这些进展,但缺乏全面的基准数据集仍是一个重大障碍。为了解决这一差距,我们的研究团队开发了 LMCD-OR,这是一个大规模的口腔射线图像集合,旨在支持广泛的人工智能(AI)驱动的诊断。LMCD-OR 包含来自当地医疗机构的 3818 张数字成像和通信医学(DICOM)口腔 X 射线图像,这些图像经过精心注释,为初级牙科门诊服务和详细的二级疾病诊断提供广泛的类别信息。该数据集旨在训练和验证多分类模型,以提高口腔疾病诊断的精度和范围。为了确保稳健的数据集验证,我们使用了四个最先进的视觉神经网络分类模型作为基准。这些模型针对严格的性能指标进行了测试,证明了该数据集能够支持高级图像分类和疾病诊断任务。LMCD-OR 可在 http://dentaldataset.zeroacademy.net 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5de/11479543/fcc58ddbc9e7/12967_2024_5741_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验