Suppr超能文献

加权基因共表达网络分析(WGCNA)的生物信息学作用及肺癌预后标志物的共表达网络鉴定

Bioinformatics role of the WGCNA analysis and co-expression network identifies of prognostic marker in lung cancer.

作者信息

Chengcheng Liang, Raza Sayed Haidar Abbas, Shengchen Yu, Mohammedsaleh Zuhair M, Shater Abdullah F, Saleh Fayez M, Alamoudi Muna O, Aloufi Bandar H, Mohajja Alshammari Ahmed, Schreurs Nicola M, Zan Linsen

机构信息

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.

Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.

出版信息

Saudi J Biol Sci. 2022 May;29(5):3519-3527. doi: 10.1016/j.sjbs.2022.02.016. Epub 2022 Feb 23.

Abstract

Lung cancer is the most talked about cancer in the world. It is also one of the cancers that currently has a high mortality rate. The aim of our research is to find more effective therapeutic targets and prognostic markers for human lung cancer. First, we download gene expression data from the GEO database. We performed weighted co-expression network analysis on the selected genes, we then constructed scale-free networks and topological overlap matrices, and performed correlation modular analysis with the cancer group. We screened the 200 genes with the highest correlation in the cyan module for functional enrichment analysis and protein interaction network construction, found that most of them focused on cell division, tumor necrosis factor-mediated signaling pathways, cellular redox homeostasis, reactive oxygen species biosynthesis, and other processes, and were related to the cell cycle, apoptosis, HIF-1 signaling pathway, p53 signaling pathway, NF-κB signaling pathway, and several cancer disease pathways are involved. Finally, we used the GEPIA website data to perform survival analysis on some of the genes with GS > 0.6 in the cyan module. CBX3, AHCY, MRPL12, TPGB, TUBG1, KIF11, LRRC59, MRPL17, TMEM106B, ZWINT, TRIP13, and HMMR was identified as an important prognostic factor for lung cancer patients. In summary, we identified 12 mRNAs associated with lung cancer prognosis. Our study contributes to a deeper understanding of the molecular mechanisms of lung cancer and provides new insights into drug use and prognosis.

摘要

肺癌是世界上讨论最多的癌症。它也是目前死亡率较高的癌症之一。我们研究的目的是为人类肺癌找到更有效的治疗靶点和预后标志物。首先,我们从基因表达综合数据库(GEO数据库)下载基因表达数据。我们对选定的基因进行加权共表达网络分析,然后构建无标度网络和拓扑重叠矩阵,并与癌症组进行相关性模块分析。我们筛选出青色模块中相关性最高的200个基因进行功能富集分析和蛋白质相互作用网络构建,发现其中大多数集中在细胞分裂、肿瘤坏死因子介导的信号通路、细胞氧化还原稳态、活性氧生物合成等过程,并且与细胞周期、细胞凋亡、低氧诱导因子-1信号通路、p53信号通路、核因子κB信号通路以及几种癌症疾病通路有关。最后,我们使用基因表达谱交互式分析网站(GEPIA网站)的数据对青色模块中GS>0.6的一些基因进行生存分析。CBX3、AHCY、MRPL12、TPGB、TUBG1、KIF11、LRRC59、MRPL17、TMEM106B、ZWINT、TRIP13和HMMR被确定为肺癌患者的重要预后因素。总之,我们鉴定出12种与肺癌预后相关的mRNA。我们的研究有助于更深入地了解肺癌的分子机制,并为药物使用和预后提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3177/9280221/30cbaf286d3a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验