Burn Ian, Button Patrick, Munguia Corella Luis, Neumark David
Department of Economics, University of Liverpool.
Department of Economics, Tulane University.
J Labor Econ. 2022 Jul;40(3):613-667. doi: 10.1086/717730. Epub 2022 May 20.
We study the relationships between ageist stereotypes - as reflected in the language used in job ads - and age discrimination in hiring, exploiting the text of job ads and differences in callbacks to older and younger job applicants from a resume (correspondence study) field experiment (Neumark, Burn, and Button, 2019). Our analysis uses computational linguistics and machine learning methods to examine, in a field-experiment setting, ageist stereotypes that might underlie age discrimination in hiring. In so doing, we develop methods and a framework for analyzing textual data, highlighting the usefulness of various computer science techniques for empirical economics research. We find evidence that language related to stereotypes of older workers sometimes predicts discrimination against older workers. For men, we find evidence that age stereotypes about all three categories we consider - health, personality, and skill - predict age discrimination, and for women, age stereotypes about personality predict age discrimination. In general, the evidence that age stereotypes predict age discrimination is much stronger for men, and our results for men are quite consistent with the industrial psychology literature on age stereotypes.
我们利用招聘广告文本以及来自简历(信件研究)实地实验中对年长和年轻求职者回访率的差异,研究招聘广告中所使用语言所反映的年龄歧视刻板印象与招聘过程中的年龄歧视之间的关系(纽马克、伯恩和巴顿,2019年)。我们的分析使用计算语言学和机器学习方法,在实地实验环境中检验可能构成招聘中年龄歧视基础的年龄歧视刻板印象。在此过程中,我们开发了分析文本数据的方法和框架,凸显了各种计算机科学技术在实证经济学研究中的有用性。我们发现有证据表明,与年长工人刻板印象相关的语言有时能预测对年长工人的歧视。对于男性,我们发现有证据表明,我们所考虑的所有三类——健康、个性和技能——的年龄刻板印象都能预测年龄歧视,而对于女性,个性方面的年龄刻板印象能预测年龄歧视。总体而言,年龄刻板印象能预测年龄歧视的证据对男性来说要有力得多,而且我们针对男性的研究结果与工业心理学中关于年龄刻板印象的文献相当一致。