Suppr超能文献

基于树的和机器学习算法在乳腺癌分类中的分析。

Tree-Based and Machine Learning Algorithm Analysis for Breast Cancer Classification.

机构信息

Department of Computer Science and Engineering, BML Munjal University, Kapriwas, Gurugram, Haryana, India.

Department of Computer Science and Engineering, Galgotias University, Greater Noida, India.

出版信息

Comput Intell Neurosci. 2022 Jul 7;2022:6715406. doi: 10.1155/2022/6715406. eCollection 2022.

Abstract

Breast cancer (BC) is the second leading cause of death in developed and developing nations, accounting for 8% of deaths after lung cancer. Gene mutation, constant pain, size fluctuations, colour (roughness), and breast skin texture are all characteristics of BC. The University of Wisconsin Hospital donated the WDBC dataset, which was created via fine-needle aspiration (biopsies) of the breast. We have implemented multilayer perceptron (MLP), K-nearest neighbor (KNN), genetic programming (GP), and random forest (RF) on the WBCD dataset to classify the benign and malignant patients. The results show that RF has a classification accuracy of 96.24%, which outperforms all the other classifiers.

摘要

乳腺癌(BC)是发达国家和发展中国家的第二大致死原因,仅次于肺癌,占死亡人数的 8%。基因突变、持续疼痛、大小波动、颜色(粗糙度)和乳房皮肤纹理都是乳腺癌的特征。威斯康星大学医院捐赠了 WDBC 数据集,该数据集是通过对乳房进行细针抽吸(活检)创建的。我们已经在 WBCD 数据集上实现了多层感知器(MLP)、K-最近邻(KNN)、遗传编程(GP)和随机森林(RF),以对良性和恶性患者进行分类。结果表明,RF 的分类准确率为 96.24%,优于所有其他分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/602c/9282979/0a963322d8e3/CIN2022-6715406.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验