Suppr超能文献

使用不同机器学习技术的人类肺癌分类与综合分析

Human lung cancer classification and comprehensive analysis using different machine learning techniques.

作者信息

Priyadarshini K, Ali S Ahamed, Sivanandam K, Alagarsamy Manjunathan

机构信息

Department of Electronics and Communication Engineering, K. Ramakrishnan College of Engineering, Trichy, Tamilnadu, India.

Department of Computer Science and Engineering, Easwari Engineering College, Chennai, Tamilnadu, India.

出版信息

Microsc Res Tech. 2025 Jan;88(1):234-250. doi: 10.1002/jemt.24682. Epub 2024 Sep 18.

Abstract

Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image-processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi-layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f-score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. RESEARCH HIGHLIGHTS: Lung cancer is a leading cause of cancer-related death. Imaging (MRI, CT, and X-ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k-nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi-layer perceptron (MLP) classify cancer types; MLP excels in accuracy.

摘要

肺癌是所有癌症相关疾病中最常见的死亡原因。对患者进行肺部扫描检查是主要的诊断技术。这种扫描分析涉及磁共振成像(MRI)、计算机断层扫描(CT)或X光检查。由于对患者肺部进行成像涉及多个步骤,肺癌的自动分类很困难。在本论文中,提出了使用不同机器学习技术对人类肺癌进行分类和综合分析的方法。首先,使用肺癌数据集收集输入图像。所提出的方法使用图像处理技术处理这些图像,并进一步利用机器学习技术进行分类。使用了七种不同的分类器,包括k近邻(KNN)、支持向量机(SVM)、决策树(DT)、多项式朴素贝叶斯(MNB)、随机梯度下降(SGD)、随机森林(RF)和多层感知器(MLP)分类器,它们将肺癌分为恶性和良性。使用性能指标(如阳性预测值、准确率、灵敏度和F值)来检验所提出方法的性能。其中,MLP分类器的性能分别比其他KNN、SVM、DT、MNB、SGD和RF的准确率高出25.34%、45.39%、15.39%、41.28%、22.17%和12.12%。研究亮点:肺癌是癌症相关死亡的主要原因。成像(MRI、CT和X光)有助于诊断。由于成像步骤复杂,肺癌的自动分类面临挑战。本研究提出使用多种机器学习技术对人类肺癌进行分类。来自肺癌数据集的输入图像经过图像处理和机器学习。诸如k近邻、支持向量机、决策树、多项式朴素贝叶斯、随机梯度下降、随机森林和多层感知器(MLP)等分类器对癌症类型进行分类;MLP在准确率方面表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验