DelVecchia Amanda G, Shanafield Margaret, Zimmer Margaret A, Busch Michelle H, Krabbenhoft Corey A, Stubbington Rachel, Kaiser Kendra E, Burrows Ryan M, Hosen Jake, Datry Thibault, Kampf Stephanie K, Zipper Samuel C, Fritz Ken, Costigan Katie, Allen Daniel C
Department of Biology, Duke University, 130 Science Drive, Durham, North Carolina 27708 USA.
College of Science and Engineering, Flinders University, Ring Road, Bedford Park, South Australia 5042 Australia.
Freshw Sci. 2022 Apr 22;41(2):167-182. doi: 10.1086/720071.
Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.
非常年性溪流在全球河网中占主导地位,且其出现频率在时空上都在增加。当地表水流停止或地表水干涸时,水流或水分可保留在潜流带的地下沉积物中,维持水生生物群落和生态系统过程。然而,潜流带的水文和生态定义是在常年性河流中形成的,分别强调了地表水和地下水的水与生物的混合。使这些定义适用于湿润和干燥的非饱和条件,有助于描述水文和生物地球化学变异性如何塑造非常年性潜流带内的生态群落,增进我们对这些生境中生态系统结构和功能的理解。为了概念化非常年性溪流的潜流带,我们回顾了水源以及地表和地下结构如何影响水文和物理化学条件。我们考虑了该区域的范围以及生物地球化学和生态学如何随地表状态而变化。然后,我们将这些要素与非常年性溪流群落的组成联系起来。接下来,我们查阅文献,以确定探索非常年性潜流带的水文和生态研究重点。最后,通过整合水文、生物地球化学和生态学,我们建议将非常年性潜流带进行多学科概念化,即将其视为多孔的地下河床沉积物,这些沉积物在时空上在流水、静水、湿润和干燥条件之间转换,以支持水陆生物多样性。由于全球变化导致河流干涸范围扩大,我们呼吁跨陆地和水生科学领域开展全面的跨学科研究,应用这一概念化方法来描述整个水文状态范围内潜流带的结构和功能。