Suppr超能文献

急性缺血性卒中血管内治疗的术前不良预测量表

A Presurgical Unfavorable Prediction Scale of Endovascular Treatment for Acute Ischemic Stroke.

作者信息

Li Jingwei, Zhu Wencheng, Zhou Junshan, Yun Wenwei, Li Xiaobo, Guan Qiaochu, Lv Weiping, Cheng Yue, Ni Huanyu, Xie Ziyi, Li Mengyun, Zhang Lu, Xu Yun, Zhang Qingxiu

机构信息

Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.

Institute of Brain Sciences, Nanjing University, Nanjing, China.

出版信息

Front Aging Neurosci. 2022 Jun 30;14:942285. doi: 10.3389/fnagi.2022.942285. eCollection 2022.

Abstract

OBJECTIVE

To develop a prognostic prediction model of endovascular treatment (EVT) for acute ischemic stroke (AIS) induced by large-vessel occlusion (LVO), this study applied machine learning classification model light gradient boosting machine (LightGBM) to construct a unique prediction model.

METHODS

A total of 973 patients were enrolled, primary outcome was assessed with modified Rankin scale (mRS) at 90 days, and favorable outcome was defined using mRS 0-2 scores. Besides, LightGBM algorithm and logistic regression (LR) were used to construct a prediction model. Then, a prediction scale was further established and verified by both internal data and other external data.

RESULTS

A total of 20 presurgical variables were analyzed using LR and LightGBM. The results of LightGBM algorithm indicated that the accuracy and precision of the prediction model were 73.77 and 73.16%, respectively. The area under the curve (AUC) was 0.824. Furthermore, the top 5 variables suggesting unfavorable outcomes were namely admitting blood glucose levels, age, onset to EVT time, onset to hospital time, and National Institutes of Health Stroke Scale (NIHSS) scores (importance = 130.9, 102.6, 96.5, 89.5 and 84.4, respectively). According to AUC, we established the key cutoff points and constructed prediction scale based on their respective weightings. Then, the established prediction scale was verified in raw and external data and the sensitivity was 80.4 and 83.5%, respectively. Finally, scores >3 demonstrated better accuracy in predicting unfavorable outcomes.

CONCLUSION

Presurgical prediction scale is feasible and accurate in identifying unfavorable outcomes of AIS after EVT.

摘要

目的

为开发一种针对大血管闭塞(LVO)所致急性缺血性卒中(AIS)血管内治疗(EVT)的预后预测模型,本研究应用机器学习分类模型轻梯度提升机(LightGBM)构建独特的预测模型。

方法

共纳入973例患者,主要结局在90天时采用改良Rankin量表(mRS)进行评估,良好结局定义为mRS 0 - 2分。此外,使用LightGBM算法和逻辑回归(LR)构建预测模型。然后,进一步建立预测量表并通过内部数据和其他外部数据进行验证。

结果

使用LR和LightGBM对总共20个术前变量进行了分析。LightGBM算法结果表明,预测模型的准确率和精确率分别为73.77%和73.16%。曲线下面积(AUC)为0.824。此外,提示不良结局的前5个变量分别为入院血糖水平、年龄、发病至EVT时间、发病至入院时间以及美国国立卫生研究院卒中量表(NIHSS)评分(重要性分别为130.9、102.6、96.5、89.5和84.4)。根据AUC,我们确定了关键截断点,并根据各自权重构建了预测量表。然后,在原始数据和外部数据中对建立的预测量表进行验证,敏感性分别为80.4%和83.5%。最后,评分>3在预测不良结局方面显示出更高的准确性。

结论

术前预测量表在识别AIS患者EVT术后不良结局方面是可行且准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验