Suppr超能文献

病毒流行期间的分子适应。

Molecular adaptations during viral epidemics.

机构信息

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.

出版信息

EMBO Rep. 2022 Aug 3;23(8):e55393. doi: 10.15252/embr.202255393. Epub 2022 Jul 18.

Abstract

In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.

摘要

1977 年,世界见证了天花的根除和基因组学现代时代的开始。在接下来的半个世纪里,7 种国际关注的流行病毒激发了全球病毒学家的研究,并导致了越来越广泛的病毒基因组测序。这些测序工作在病毒快速适应新宿主(尤其是人类)的过程中进行,为病毒进化的分子机制提供了深入了解。在 COVID-19 大流行期间,对系统基因组分析的空前支持极大地促进了病毒基因组测序的投资。在这篇综述中,我们试图拼凑出天花病毒、HIV-1 M、SARS、H1N1-SIV、MERS、埃博拉病毒、寨卡病毒和 SARS-CoV-2 适应人类宿主的全面分子史。在动物宿主中,与病毒-宿主相互作用相关的基因的破坏、包括基因组片段重排在内的重组以及导致病毒蛋白中参与宿主受体结合和膜融合的氨基酸替换的适应性突变,被确定为流行病毒进化的关键因素。

相似文献

1
Molecular adaptations during viral epidemics.
EMBO Rep. 2022 Aug 3;23(8):e55393. doi: 10.15252/embr.202255393. Epub 2022 Jul 18.
2
SARS-CoV-2 variants, its recombinants and epigenomic exploitation of host defenses.
Biochim Biophys Acta Mol Basis Dis. 2023 Dec;1869(8):166836. doi: 10.1016/j.bbadis.2023.166836. Epub 2023 Aug 5.
4
The beginning and ending of a respiratory viral pandemic-lessons from the Spanish flu.
Microb Biotechnol. 2022 May;15(5):1301-1317. doi: 10.1111/1751-7915.14053. Epub 2022 Mar 22.
5
Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans.
J Virol. 2018 Sep 12;92(19). doi: 10.1128/JVI.01206-18. Print 2018 Oct 1.
6

引用本文的文献

1
Evolution of a fuzzy ribonucleoprotein complex in viral assembly.
bioRxiv. 2025 Apr 28:2025.04.26.650775. doi: 10.1101/2025.04.26.650775.
2
Detection and characterization of Langya virus in (the Ussuri white-toothed shrew), Republic of Korea.
One Health. 2025 Mar 19;20:101017. doi: 10.1016/j.onehlt.2025.101017. eCollection 2025 Jun.
3
Evolutionary Dynamics and Population Genetics of Ash Shoestring-Associated Virus in a European-Wide Survey.
Microorganisms. 2025 Mar 11;13(3):633. doi: 10.3390/microorganisms13030633.
4
RUNCOV: a one-pot triplex real-time RT-LAMP as a point-of-care diagnostic tool for detecting SARS-CoV-2.
Biol Methods Protoc. 2025 Feb 7;10(1):bpaf010. doi: 10.1093/biomethods/bpaf010. eCollection 2025.
5
The evolution and epidemiology of H3N2 canine influenza virus after 20 years in dogs.
Epidemiol Infect. 2025 Mar 5;153:e47. doi: 10.1017/S0950268825000251.
8
Learn from the past to predict viral pandemics.
Nature. 2023 Oct;622(7984):700-702. doi: 10.1038/d41586-023-02931-9.
9
Fitness effects of mutations to SARS-CoV-2 proteins.
Virus Evol. 2023 Sep 18;9(2):vead055. doi: 10.1093/ve/vead055. eCollection 2023.
10
Understanding the divergent evolution and epidemiology of H3N8 influenza viruses in dogs and horses.
Virus Evol. 2023 Aug 18;9(2):vead052. doi: 10.1093/ve/vead052. eCollection 2023.

本文引用的文献

1
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2121335119. doi: 10.1073/pnas.2121335119. Epub 2022 May 31.
2
Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination.
Nature. 2022 Jul;607(7918):351-355. doi: 10.1038/s41586-022-04865-0. Epub 2022 May 18.
6
Pan-ebolavirus serology study of healthcare workers in the Mbandaka Health Region, Democratic Republic of the Congo.
PLoS Negl Trop Dis. 2022 Mar 7;16(3):e0010167. doi: 10.1371/journal.pntd.0010167. eCollection 2022 Mar.
7
An Update of Orthopoxvirus Molecular Evolution.
Viruses. 2022 Feb 14;14(2):388. doi: 10.3390/v14020388.
8
The changing epidemiology of human monkeypox-A potential threat? A systematic review.
PLoS Negl Trop Dis. 2022 Feb 11;16(2):e0010141. doi: 10.1371/journal.pntd.0010141. eCollection 2022 Feb.
9
SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape.
Cell Host Microbe. 2022 Feb 9;30(2):154-162.e5. doi: 10.1016/j.chom.2022.01.005. Epub 2022 Jan 14.
10
A highly virulent variant of HIV-1 circulating in the Netherlands.
Science. 2022 Feb 4;375(6580):540-545. doi: 10.1126/science.abk1688. Epub 2022 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验