Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom.
Department of Bioengineering, Imperial College London, London, United Kingdom.
Elife. 2022 Jul 18;11:e76489. doi: 10.7554/eLife.76489.
Our understanding of the behaviour of spinal alpha-motoneurons (MNs) in mammals partly relies on our knowledge of the relationships between MN membrane properties, such as MN size, resistance, rheobase, capacitance, time constant, axonal conduction velocity, and afterhyperpolarization duration. We reprocessed the data from 40 experimental studies in adult cat, rat, and mouse MN preparations to empirically derive a set of quantitative mathematical relationships between these MN electrophysiological and anatomical properties. This validated mathematical framework, which supports past findings that the MN membrane properties are all related to each other and clarifies the nature of their associations, is besides consistent with the Henneman's size principle and Rall's cable theory. The derived mathematical relationships provide a convenient tool for neuroscientists and experimenters to complete experimental datasets, explore the relationships between pairs of MN properties never concurrently observed in previous experiments, or investigate inter-mammalian-species variations in MN membrane properties. Using this mathematical framework, modellers can build profiles of inter-consistent MN-specific properties to scale pools of MN models, with consequences on the accuracy and the interpretability of the simulations.
我们对哺乳动物脊髓α运动神经元(MN)行为的理解部分依赖于我们对 MN 膜特性之间关系的了解,例如 MN 大小、电阻、基强度、电容、时间常数、轴突传导速度和后超极化持续时间。我们重新处理了来自成年猫、大鼠和小鼠 MN 制剂的 40 项实验研究的数据,以经验得出这些 MN 电生理和解剖特性之间的一组定量数学关系。该经过验证的数学框架支持了过去的发现,即 MN 膜特性彼此相关,并阐明了它们之间关联的性质,此外还与亨纳曼的大小原则和拉尔的电缆理论一致。推导出的数学关系为神经科学家和实验者提供了一个方便的工具,可以完成实验数据集,探索以前实验中从未同时观察到的 MN 特性对的关系,或研究 MN 膜特性在哺乳动物物种间的变化。使用这个数学框架,建模者可以构建一致的 MN 特定特性的轮廓,以对 MN 模型池进行缩放,从而对模拟的准确性和可解释性产生影响。