Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.
Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States.
Elife. 2018 Mar 27;7:e30955. doi: 10.7554/eLife.30955.
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration.
超兴奋性被认为有助于肌萎缩侧索硬化症 (ALS) 中的运动神经元退化。如果是这样,并且鉴于运动单位的生理类型决定了其在 ALS 中运动神经元的相对易感性,那么人们预计最脆弱的运动神经元在退化之前会表现出最强的超兴奋性,而不太脆弱的运动神经元如果有超兴奋性的话,也应该表现出中等程度的超兴奋性。我们通过将运动神经元的电特性与其生理类型相关联,在两种不相关的 ALS 小鼠模型中在体内测试了这一假设,生理类型是根据其运动单位收缩特性来确定的。我们发现,尽管神经肌肉接头仍然正常,但最脆弱的运动神经元变得无法重复放电,远非超兴奋性。疾病标志物证实这种功能丧失是退化的早期迹象。我们的结果表明,内在的超兴奋性不太可能是运动神经元退化的原因。