Elizabeth Amala, Sahoo Sudhir K, Phirke Himanshu, Kodalle Tim, Kühne Thomas D, Audinot Jean-Nicolas, Wirtz Tom, Redinger Alex, Kaufmann Christian A, Mirhosseini Hossein, Mönig Harry
Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, Münster 48149, Germany.
Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, Münster 48149, Germany.
ACS Appl Mater Interfaces. 2022 Jul 27;14(29):34101-34112. doi: 10.1021/acsami.2c08257. Epub 2022 Jul 18.
Alkali postdeposition treatments of Cu(In,Ga)Se absorbers with KF, RbF, and CsF have led to remarkable efficiency improvements for chalcopyrite thin film solar cells. However, the effect of such treatments on the electronic properties and defect physics of the chalcopyrite absorber surfaces are not yet fully understood. In this work, we use scanning tunneling spectroscopy and X-ray photoelectron spectroscopy to compare the surface defect electronic properties and chemical composition of RbF-treated and nontreated absorbers. We find that the RbF treatment is effective in passivating electronic defect levels at the surface by preventing surface oxidation. Our X-ray photoelectron spectroscopy (XPS) data points to the presence of chemisorbed Rb on the surface with a bonding configuration similar to that of a RbInSe bulk compound. Yet, a quantitative analysis indicates Rb coverage in the submonolayer regime, which is likely causing the surface passivation. Furthermore, ab initio calculations confirm that RbF-treated surfaces are less prone to oxidation (in the form of Ga, In, and Se oxides) than bare chalcopyrite surfaces. In addition, elemental diffusion of Rb along with Na, Cu, and Ga is found to occur when the samples are annealed under ultrahigh vacuum conditions. Magnetic sector secondary ion mass spectrometry measurements indicate that there is a homogeneous spatial distribution of Rb on the surface both before and after annealing, albeit with an increased concentration at the surface after heat treatment. Depth-resolved magnetic sector secondary ion mass spectrometry measurements show that Rb diffusion within the bulk occurs predominantly along grain boundaries. Scanning tunneling and XPS measurements after subsequent annealing steps demonstrate that the Rb accumulation at the surface leads to the formation of metallic Rb phases, involving a significant increase of electronic defect levels and/or surface dipole formation. These results strongly suggest a deterioration of the absorber-window interface because of increased recombination losses after the heat-induced diffusion of Rb toward the interface.
用KF、RbF和CsF对Cu(In,Ga)Se吸收层进行碱后沉积处理,已使黄铜矿薄膜太阳能电池的效率得到显著提高。然而,此类处理对黄铜矿吸收层表面电子性质和缺陷物理的影响尚未完全了解。在这项工作中,我们使用扫描隧道光谱和X射线光电子能谱来比较经RbF处理和未经处理的吸收层的表面缺陷电子性质和化学成分。我们发现,RbF处理通过防止表面氧化,有效地钝化了表面的电子缺陷能级。我们的X射线光电子能谱(XPS)数据表明,表面存在化学吸附的Rb,其键合构型与RbInSe体相化合物相似。然而,定量分析表明Rb覆盖度处于亚单层范围,这可能导致了表面钝化。此外,从头算计算证实,与裸露的黄铜矿表面相比,经RbF处理的表面更不易发生氧化(以Ga、In和Se氧化物的形式)。另外,发现当样品在超高真空条件下退火时,Rb会与Na、Cu和Ga一起发生元素扩散。磁扇形二次离子质谱测量表明,退火前后Rb在表面的空间分布都是均匀的,尽管热处理后表面浓度有所增加。深度分辨磁扇形二次离子质谱测量表明,Rb在体相内的扩散主要沿晶界发生。后续退火步骤后的扫描隧道和XPS测量表明,表面的Rb积累导致了金属Rb相的形成,这涉及电子缺陷能级的显著增加和/或表面偶极子的形成。这些结果强烈表明,由于热诱导的Rb向界面扩散后复合损失增加,吸收层-窗口界面发生了退化。