Suppr超能文献

通过多变量孟德尔随机化估计多个时间点随时间变化的暴露因素的因果效应。

Estimation of causal effects of a time-varying exposure at multiple time points through multivariable mendelian randomization.

机构信息

MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom.

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.

出版信息

PLoS Genet. 2022 Jul 18;18(7):e1010290. doi: 10.1371/journal.pgen.1010290. eCollection 2022 Jul.

Abstract

Mendelian Randomisation (MR) is a powerful tool in epidemiology that can be used to estimate the causal effect of an exposure on an outcome in the presence of unobserved confounding, by utilising genetic variants as instrumental variables (IVs) for the exposure. The effect estimates obtained from MR studies are often interpreted as the lifetime effect of the exposure in question. However, the causal effects of some exposures are thought to vary throughout an individual's lifetime with periods during which an exposure has a greater effect on a particular outcome. Multivariable MR (MVMR) is an extension of MR that allows for multiple, potentially highly related, exposures to be included in an MR estimation. MVMR estimates the direct effect of each exposure on the outcome conditional on all the other exposures included in the estimation. We explore the use of MVMR to estimate the direct effect of a single exposure at different time points in an individual's lifetime on an outcome. We use simulations to illustrate the interpretation of the results from such analyses and the key assumptions required. We show that causal effects at different time periods can be estimated through MVMR when the association between the genetic variants used as instruments and the exposure measured at those time periods varies. However, this estimation will not necessarily identify exact time periods over which an exposure has the most effect on the outcome. Prior knowledge regarding the biological basis of exposure trajectories can help interpretation. We illustrate the method through estimation of the causal effects of childhood and adult BMI on C-Reactive protein and smoking behaviour.

摘要

孟德尔随机化(MR)是流行病学中一种强大的工具,它可以利用遗传变异作为暴露的工具变量(IV),在存在未观察到的混杂的情况下,估计暴露对结局的因果效应。从 MR 研究中获得的效应估计值通常被解释为所研究暴露的终生效应。然而,一些暴露的因果效应被认为在个体的一生中随着暴露对特定结局的影响更大的时期而变化。多变量 MR(MVMR)是 MR 的扩展,它允许将多个、可能高度相关的暴露纳入 MR 估计中。MVMR 估计了每个暴露对结局的直接效应,条件是包括在估计中的所有其他暴露。我们探讨了使用 MVMR 来估计个体一生中不同时间点的单一暴露对结局的直接效应。我们使用模拟来说明对这些分析结果的解释和所需的关键假设。我们表明,当用作工具的遗传变异与在这些时间段测量的暴露之间的关联发生变化时,可以通过 MVMR 估计不同时间段的因果效应。然而,这种估计不一定能确定暴露对结局影响最大的确切时间段。关于暴露轨迹的生物学基础的先验知识有助于解释。我们通过估计儿童期和成年 BMI 对 C 反应蛋白和吸烟行为的因果效应来说明该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6631/9348730/24053f48e4f0/pgen.1010290.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验