Suppr超能文献

基于孟德尔随机化的连续时间模型估计时变暴露效应。

Estimating Time-Varying Exposure Effects Through Continuous-Time Modelling in Mendelian Randomization.

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

出版信息

Stat Med. 2024 Nov 30;43(27):5166-5181. doi: 10.1002/sim.10222. Epub 2024 Oct 6.

Abstract

Mendelian randomization is an instrumental variable method that utilizes genetic information to investigate the causal effect of a modifiable exposure on an outcome. In most cases, the exposure changes over time. Understanding the time-varying causal effect of the exposure can yield detailed insights into mechanistic effects and the potential impact of public health interventions. Recently, a growing number of Mendelian randomization studies have attempted to explore time-varying causal effects. However, the proposed approaches oversimplify temporal information and rely on overly restrictive structural assumptions, limiting their reliability in addressing time-varying causal problems. This article considers a novel approach to estimate time-varying effects through continuous-time modelling by combining functional principal component analysis and weak-instrument-robust techniques. Our method effectively utilizes available data without making strong structural assumptions and can be applied in general settings where the exposure measurements occur at different timepoints for different individuals. We demonstrate through simulations that our proposed method performs well in estimating time-varying effects and provides reliable inference when the time-varying effect form is correctly specified. The method could theoretically be used to estimate arbitrarily complex time-varying effects. However, there is a trade-off between model complexity and instrument strength. Estimating complex time-varying effects requires instruments that are unrealistically strong. We illustrate the application of this method in a case study examining the time-varying effects of systolic blood pressure on urea levels.

摘要

孟德尔随机化是一种工具变量方法,利用遗传信息来研究可改变的暴露因素对结果的因果效应。在大多数情况下,暴露因素随时间而变化。了解暴露因素的时变因果效应可以深入了解机制效应和公共卫生干预措施的潜在影响。最近,越来越多的孟德尔随机化研究试图探索时变因果效应。然而,所提出的方法过于简化了时间信息,并依赖于过于严格的结构假设,限制了它们在解决时变因果问题方面的可靠性。本文考虑了一种通过结合函数主成分分析和弱工具稳健技术来通过连续时间建模估计时变效应的新方法。我们的方法有效地利用了可用数据,而无需进行强结构假设,并且可以应用于暴露测量在不同个体的不同时间点发生的一般情况下。我们通过模拟证明,我们提出的方法在估计时变效应方面表现良好,并且在正确指定时变效应形式时提供可靠的推断。从理论上讲,该方法可用于估计任意复杂的时变效应。但是,模型复杂性和工具强度之间存在权衡。估计复杂的时变效应需要不切实际的强工具。我们在一个案例研究中说明了该方法的应用,该研究检验了收缩压对尿素水平的时变效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c948/11583958/c7c14ba2f8a5/SIM-43-5166-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验