Suppr超能文献

缓解脆弱模型中的空间混杂。

Alleviating spatial confounding in frailty models.

机构信息

R/Shiny Developer, Appsilon, Warsaw, Poland.

Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

出版信息

Biostatistics. 2023 Oct 18;24(4):945-961. doi: 10.1093/biostatistics/kxac028.

Abstract

The confounding between fixed effects and (spatial) random effects in a regression setup is termed spatial confounding. This topic continues to gain attention and has been studied extensively in recent years, given that failure to account for this may lead to a suboptimal inference. To mitigate this, a variety of projection-based approaches under the class of restricted spatial models are available in the context of generalized linear mixed models. However, these projection approaches cannot be directly extended to the spatial survival context via frailty models due to dimension incompatibility between the fixed and spatial random effects. In this work, we introduce a two-step approach to handle this, which involves (i) projecting the design matrix to the dimension of the spatial effect (via dimension reduction) and (ii) assuring that the random effect is orthogonal to this new design matrix (confounding alleviation). Under a fully Bayesian paradigm, we conduct fast estimation and inference using integrated nested Laplace approximation. Both simulation studies and application to a motivating data evaluating respiratory cancer survival in the US state of California reveal the advantages of our proposal in terms of model performance and confounding alleviation, compared to alternatives.

摘要

在回归设置中,固定效应和(空间)随机效应之间的混淆称为空间混淆。由于未能考虑到这一点可能会导致次优的推断,近年来这个话题引起了越来越多的关注,并得到了广泛的研究。为了减轻这种情况,可以在广义线性混合模型的背景下,使用受限空间模型类中的各种基于投影的方法。然而,由于固定效应和空间随机效应之间的维度不兼容,这些投影方法不能通过脆弱性模型直接扩展到空间生存环境中。在这项工作中,我们引入了一种两步处理方法,包括(i)将设计矩阵投影到空间效应的维度上(通过降维)和(ii)确保随机效应与这个新的设计矩阵正交(混淆缓解)。在完全贝叶斯范例下,我们使用集成嵌套拉普拉斯逼近进行快速估计和推断。模拟研究和对一个有动机的数据的应用,评估了美国加利福尼亚州的呼吸癌生存情况,与替代方案相比,我们的建议在模型性能和混淆缓解方面都具有优势。

相似文献

1
Alleviating spatial confounding in frailty models.缓解脆弱模型中的空间混杂。
Biostatistics. 2023 Oct 18;24(4):945-961. doi: 10.1093/biostatistics/kxac028.
2
Assessing spatial confounding in cancer disease mapping using R.使用 R 评估癌症疾病制图中的空间混杂。
Cancer Rep (Hoboken). 2020 Aug;3(4):e1263. doi: 10.1002/cnr2.1263. Epub 2020 Jul 28.
3
Bayesian survival analysis with INLA.贝叶斯生存分析与 INLA。
Stat Med. 2024 Sep 10;43(20):3975-4010. doi: 10.1002/sim.10160. Epub 2024 Jun 23.
9
Bayesian model selection for generalized linear mixed models.贝叶斯广义线性混合模型选择。
Biometrics. 2023 Dec;79(4):3266-3278. doi: 10.1111/biom.13896. Epub 2023 Jun 27.

引用本文的文献

本文引用的文献

2
RESTRICTED SPATIAL REGRESSION METHODS: IMPLICATIONS FOR INFERENCE.受限空间回归方法:对推断的影响
J Am Stat Assoc. 2022;117(537):482-494. doi: 10.1080/01621459.2020.1788949. Epub 2020 Aug 18.
3
Spatial+: A novel approach to spatial confounding.空间+:一种解决空间混杂问题的新方法。
Biometrics. 2022 Dec;78(4):1279-1290. doi: 10.1111/biom.13656. Epub 2022 Mar 30.
5
Evaluating the informativeness of the Besag-York-Mollié CAR model.评估贝萨格-约克-莫利耶条件自回归模型的信息量。
Spat Spatiotemporal Epidemiol. 2021 Jun;37:100420. doi: 10.1016/j.sste.2021.100420. Epub 2021 Mar 27.
8
Assessing spatial confounding in cancer disease mapping using R.使用 R 评估癌症疾病制图中的空间混杂。
Cancer Rep (Hoboken). 2020 Aug;3(4):e1263. doi: 10.1002/cnr2.1263. Epub 2020 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验