Suppr超能文献

空间混杂下常见空间估计量的一致性

Consistency of common spatial estimators under spatial confounding.

作者信息

Gilbert Brian, Ogburn Elizabeth L, Datta Abhirup

机构信息

Department of Biostatistics, Johns Hopkins University, 605 N Wolfe Street, Baltimore, Maryland 21215, U.S.A.

出版信息

Biometrika. 2025;112(2). doi: 10.1093/biomet/asae070. Epub 2024 Dec 23.

Abstract

This article addresses the asymptotic performance of popular spatial regression estimators of the linear effect of an exposure on an outcome under spatial confounding, the presence of an unmeasured spatially structured variable influencing both the exposure and the outcome. We first show that the estimators from ordinary least squares and restricted spatial regression are asymptotically biased under spatial confounding. We then prove a novel result on the infill consistency of the generalized least squares estimator using a working covariance matrix from a Matérn or squared exponential kernel, in the presence of spatial confounding. The result holds under very mild assumptions, accommodating any exposure with some nonspatial variation, any spatially continuous fixed confounder function, and non-Gaussian errors in both the exposure and the outcome. Finally, we prove that spatial estimators from generalized least squares, Gaussian process regression and spline models that are consistent under confounding by a fixed function will also be consistent under endogeneity or confounding by a random function, i.e., a stochastic process. We conclude that, contrary to some claims in the literature on spatial confounding, traditional spatial estimators are capable of estimating linear exposure effects under spatial confounding as long as there is some noise in the exposure. We support our theoretical arguments with simulation studies.

摘要

本文探讨了在空间混杂(即存在一个影响暴露和结果的未测量空间结构变量)情况下,流行的空间回归估计量对暴露对结果的线性效应的渐近性能。我们首先表明,在空间混杂情况下,普通最小二乘法和受限空间回归的估计量存在渐近偏差。然后,我们证明了一个新的结果,即在存在空间混杂的情况下,使用来自Matérn或平方指数核的工作协方差矩阵,广义最小二乘估计量的填充一致性。该结果在非常温和的假设下成立,适用于任何具有一定非空间变化的暴露、任何空间连续的固定混杂函数以及暴露和结果中的非高斯误差。最后,我们证明,在由固定函数混杂时一致的广义最小二乘法、高斯过程回归和样条模型的空间估计量,在由随机函数(即随机过程)引起的内生性或混杂情况下也将是一致的。我们得出结论,与文献中关于空间混杂的一些说法相反,只要暴露中存在一些噪声,传统空间估计量就能够在空间混杂情况下估计线性暴露效应。我们通过模拟研究支持我们的理论观点。

相似文献

6
Omega-3 fatty acids for depression in adults.成人抑郁症的ω-3脂肪酸治疗
Cochrane Database Syst Rev. 2015 Nov 5;2015(11):CD004692. doi: 10.1002/14651858.CD004692.pub4.
7
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.
8
Antidepressant treatment for postnatal depression.产后抑郁症的抗抑郁治疗。
Cochrane Database Syst Rev. 2014 Sep 11;2014(9):CD002018. doi: 10.1002/14651858.CD002018.pub2.
10
Cycling infrastructure for reducing cycling injuries in cyclists.用于减少骑车人骑行受伤的自行车基础设施。
Cochrane Database Syst Rev. 2015 Dec 10;2015(12):CD010415. doi: 10.1002/14651858.CD010415.pub2.

本文引用的文献

1
Spectral adjustment for spatial confounding.针对空间混杂因素的光谱调整。
Biometrika. 2023 Sep;110(3):699-719. doi: 10.1093/biomet/asac069. Epub 2022 Dec 21.
2
RESTRICTED SPATIAL REGRESSION METHODS: IMPLICATIONS FOR INFERENCE.受限空间回归方法:对推断的影响
J Am Stat Assoc. 2022;117(537):482-494. doi: 10.1080/01621459.2020.1788949. Epub 2020 Aug 18.
3
Alleviating spatial confounding in frailty models.缓解脆弱模型中的空间混杂。
Biostatistics. 2023 Oct 18;24(4):945-961. doi: 10.1093/biostatistics/kxac028.
4
Spatial+: A novel approach to spatial confounding.空间+:一种解决空间混杂问题的新方法。
Biometrics. 2022 Dec;78(4):1279-1290. doi: 10.1111/biom.13656. Epub 2022 Mar 30.
5
Selecting a Scale for Spatial Confounding Adjustment.选择用于空间混杂调整的量表。
J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1121-1143. doi: 10.1111/rssa.12556. Epub 2020 Mar 11.
9
Disease mapping and spatial regression with count data.利用计数数据进行疾病映射与空间回归。
Biostatistics. 2007 Apr;8(2):158-83. doi: 10.1093/biostatistics/kxl008. Epub 2006 Jun 29.
10
Spatial correlation in ecological analysis.生态分析中的空间相关性。
Int J Epidemiol. 1993 Dec;22(6):1193-202. doi: 10.1093/ije/22.6.1193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验