Suppr超能文献

受限空间回归方法:对推断的影响

RESTRICTED SPATIAL REGRESSION METHODS: IMPLICATIONS FOR INFERENCE.

作者信息

Khan Kori, Calder Catherine A

机构信息

Department of Statistics, The Ohio State University.

Department of Statistics and Data Sciences, University of Texas at Austin.

出版信息

J Am Stat Assoc. 2022;117(537):482-494. doi: 10.1080/01621459.2020.1788949. Epub 2020 Aug 18.

Abstract

The issue of spatial confounding between the spatial random effect and the fixed effects in regression analyses has been identified as a concern in the statistical literature. Multiple authors have offered perspectives and potential solutions. In this paper, for the areal spatial data setting, we show that many of the methods designed to alleviate spatial confounding can be viewed as special cases of a general class of models. We refer to this class as Restricted Spatial Regression (RSR) models, extending terminology currently in use. We offer a mathematically based exploration of the impact that RSR methods have on inference for regression coefficients for the linear model. We then explore whether these results hold in the generalized linear model setting for count data using simulations. We show that the use of these methods have counterintuitive consequences which defy the general expectations in the literature. In particular, our results and the accompanying simulations suggest that RSR methods will typically perform worse than non-spatial methods. These results have important implications for dimension reduction strategies in spatial regression modeling. Specifically, we demonstrate that the problems with RSR models cannot be fixed with a selection of "better" spatial basis vectors or dimension reduction techniques.

摘要

回归分析中空间随机效应与固定效应之间的空间混杂问题在统计文献中已被视为一个关注点。多位作者提出了观点及潜在解决方案。在本文中,针对区域空间数据设置,我们表明许多旨在减轻空间混杂的方法可被视为一类通用模型的特殊情况。我们将这类模型称为受限空间回归(RSR)模型,扩展了当前使用的术语。我们对RSR方法对线性模型回归系数推断的影响进行了基于数学的探究。然后,我们通过模拟探究这些结果在计数数据的广义线性模型设置中是否成立。我们表明,使用这些方法会产生违反直觉的后果,与文献中的一般预期相悖。特别是,我们的结果及相关模拟表明,RSR方法通常比非空间方法表现更差。这些结果对空间回归建模中的降维策略具有重要意义。具体而言,我们证明了RSR模型的问题无法通过选择“更好”的空间基向量或降维技术来解决。

相似文献

1
RESTRICTED SPATIAL REGRESSION METHODS: IMPLICATIONS FOR INFERENCE.
J Am Stat Assoc. 2022;117(537):482-494. doi: 10.1080/01621459.2020.1788949. Epub 2020 Aug 18.
2
Alleviating spatial confounding in frailty models.
Biostatistics. 2023 Oct 18;24(4):945-961. doi: 10.1093/biostatistics/kxac028.
3
Assessing spatial confounding in cancer disease mapping using R.
Cancer Rep (Hoboken). 2020 Aug;3(4):e1263. doi: 10.1002/cnr2.1263. Epub 2020 Jul 28.
4
copCAR: A Flexible Regression Model for Areal Data.
J Comput Graph Stat. 2015 Sep 16;24(3):733-755. doi: 10.1080/10618600.2014.948178. Epub 2014 Jul 31.
7
Bridging conditional and marginal inference for spatially referenced binary data.
Biometrics. 2013 Jun;69(2):545-54. doi: 10.1111/biom.12027. Epub 2013 May 31.

引用本文的文献

1
Consistency of common spatial estimators under spatial confounding.
Biometrika. 2025;112(2). doi: 10.1093/biomet/asae070. Epub 2024 Dec 23.
2
Fast Bayesian Inference for Spatial Mean-Parameterized Conway-Maxwell-Poisson Models.
J Comput Graph Stat. 2025;34(2):697-706. doi: 10.1080/10618600.2024.2394460. Epub 2024 Sep 24.
3
Spectral adjustment for spatial confounding.
Biometrika. 2023 Sep;110(3):699-719. doi: 10.1093/biomet/asac069. Epub 2022 Dec 21.
4
A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
Int Stat Rev. 2021 Dec;89(3):605-634. doi: 10.1111/insr.12452. Epub 2021 May 31.
5
Paws on the Street: Neighborhood-Level Concentration of Households with Dogs and Urban Crime.
Soc Forces. 2022 Jun 25;101(4):1888-1917. doi: 10.1093/sf/soac059. eCollection 2023 Apr.
6
A joint hierarchical model for the number of cases and deaths due to COVID-19 across the boroughs of Montreal.
Spat Spatiotemporal Epidemiol. 2022 Aug;42:100518. doi: 10.1016/j.sste.2022.100518. Epub 2022 May 23.
7
Alleviating spatial confounding in frailty models.
Biostatistics. 2023 Oct 18;24(4):945-961. doi: 10.1093/biostatistics/kxac028.
8
Community confounding in joint species distribution models.
Sci Rep. 2022 Jul 18;12(1):12235. doi: 10.1038/s41598-022-15694-6.
9
Hierarchical multivariate directed acyclic graph autoregressive models for spatial diseases mapping.
Stat Med. 2022 Jul 20;41(16):3057-3075. doi: 10.1002/sim.9404. Epub 2022 Apr 6.
10
Spatial+: A novel approach to spatial confounding.
Biometrics. 2022 Dec;78(4):1279-1290. doi: 10.1111/biom.13656. Epub 2022 Mar 30.

本文引用的文献

2
Gaussian predictive process models for large spatial data sets.
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.
3
Approximate likelihood for large irregularly spaced spatial data.
J Am Stat Assoc. 2007 Mar;102(477):321-331. doi: 10.1198/016214506000000852.
4
Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models.
Biometrics. 2006 Dec;62(4):1197-206. doi: 10.1111/j.1541-0420.2006.00617.x.
5
Notes on continuous stochastic phenomena.
Biometrika. 1950 Jun;37(1-2):17-23.
6
Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota.
Biostatistics. 2003 Jan;4(1):123-42. doi: 10.1093/biostatistics/4.1.123.
7
Spatial correlation in ecological analysis.
Int J Epidemiol. 1993 Dec;22(6):1193-202. doi: 10.1093/ije/22.6.1193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验