Mahini Reza, Xu Peng, Chen Guoliang, Li Yansong, Ding Weiyan, Zhang Lei, Qureshi Nauman Khalid, Hämäläinen Timo, Nandi Asoke K, Cong Fengyu
School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, China.
Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland.
Brain Topogr. 2022 Nov;35(5-6):537-557. doi: 10.1007/s10548-022-00903-2. Epub 2022 Jul 18.
Averaging amplitudes over consecutive time samples (i.e., time window) is widely used to calculate the peak amplitude of event-related potentials (ERPs). Cluster analysis of the spatio-temporal ERP data is a promising tool to determine the time window of an ERP of interest. However, determining an appropriate number of clusters to optimally represent ERPs is still challenging. Here, we develop a new method to estimate the optimal number of clusters utilizing consensus clustering. Various polarity dependent clustering methods, namely, k-means, hierarchical clustering, fuzzy c-means, self-organizing map, spectral clustering, and Gaussian mixture model, are used to configure consensus clustering after assessing them individually. When a range of clusters is applied many times, the optimal number of clusters should correspond to the expectation, which is the average of the obtained mean inner-similarities of estimated time windows across all conditions and groups converge in the satisfactory thresholds. In order to assess our method, the proposed method has been applied to simulated data and prospective memory experiment ERP data aimed to qualify N2 and P3, and N300 and prospective positivity components, respectively. The results of determining the optimal number of clusters meet at six cluster maps for both ERP data. In addition, our results revealed that the proposed method could be reliably applied to ERP data to determine the appropriate time window for the ERP of interest when the measurement interval is not accurately defined.
对连续时间样本(即时间窗口)的振幅进行平均,被广泛用于计算事件相关电位(ERP)的峰值振幅。对时空ERP数据进行聚类分析是确定感兴趣的ERP时间窗口的一种很有前景的工具。然而,确定合适的聚类数量以最佳地表示ERP仍然具有挑战性。在此,我们开发了一种利用一致性聚类来估计最佳聚类数量的新方法。在分别评估各种极性相关的聚类方法(即k均值聚类、层次聚类、模糊c均值聚类、自组织映射、谱聚类和高斯混合模型)之后,将它们用于配置一致性聚类。当多次应用一系列聚类时,最佳聚类数量应符合预期,即所有条件和组中估计时间窗口的平均内部相似度的平均值在令人满意的阈值内收敛。为了评估我们的方法,已将所提出的方法应用于模拟数据和前瞻性记忆实验ERP数据,分别旨在鉴定N2和P3以及N300和前瞻性阳性成分。对于这两种ERP数据,确定最佳聚类数量的结果在六个聚类图上是一致的。此外,我们的结果表明,当测量间隔未准确界定时,所提出的方法可以可靠地应用于ERP数据,以确定感兴趣的ERP的合适时间窗口。