Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany.
Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany.
Plant Cell Environ. 2022 Oct;45(10):3052-3069. doi: 10.1111/pce.14399. Epub 2022 Jul 31.
Beneficial bacteria interact with plants using signalling molecules, such as N-acyl homoserine-lactones (AHLs). Although there is evidence that these molecules affect plant responses to pathogens, few studies have examined their effect on plant-insect and microbiome interactions, especially under variable soil conditions. We investigated the effect of the AHL-producing rhizobacterium Acidovorax radicis and its AHL-negative mutant (does not produce AHLs) on modulating barley (Hordeum vulgare) plant interactions with cereal aphids (Sitobion avenae) and earthworms (Dendrobaena veneta) across variable nutrient soils. Acidovorax radicis inoculation increased plant growth and suppressed aphids, with stronger effects by the AHL-negative mutant. However, effects varied between barley cultivars and the presence of earthworms altered interaction outcomes. Bacteria-induced plant defences differed between cultivars, and aphid exposure, with pathogenesis-related and WRKY pathways partly explaining the ecological effects in the more resistant cultivars. Additionally, we observed few but specific indirect effects via the wider root microbiome where the AHL-mutant strain influenced rare OTU abundances. We conclude that bacterial AHL-signalling disruption affects plant-microbial interactions by inducing different plant pathways, leading to increased insect resistance, also mediated by the surrounding biotic and abiotic environment. Understanding the mechanisms by which beneficial bacteria can reduce insect pests is a key research area for developing effective insect pest management strategies in sustainable agriculture.
有益细菌通过信号分子(如 N-酰基高丝氨酸内酯(AHLs))与植物相互作用。尽管有证据表明这些分子会影响植物对病原体的反应,但很少有研究探讨它们对植物-昆虫和微生物组相互作用的影响,尤其是在可变土壤条件下。我们研究了产 AHL 的根际细菌 Acidovorax radicis 及其 AHL 阴性突变体(不产生 AHLs)对调节大麦(Hordeum vulgare)植物与谷物蚜虫(Sitobion avenae)和蚯蚓(Dendrobaena veneta)在可变养分土壤中的相互作用的影响。Acidovorax radicis 接种增加了植物生长并抑制了蚜虫,AHL 阴性突变体的作用更强。然而,效果因大麦品种和蚯蚓的存在而异,改变了相互作用的结果。细菌诱导的植物防御在品种之间存在差异,并且蚜虫暴露与病程相关和 WRKY 途径部分解释了在更具抗性的品种中产生的生态效应。此外,我们还观察到通过更广泛的根微生物组产生的少数但特定的间接影响,其中 AHL 突变菌株影响罕见的 OTU 丰度。我们得出结论,细菌 AHL 信号中断通过诱导不同的植物途径影响植物-微生物相互作用,从而导致昆虫抗性增加,这也受到周围生物和非生物环境的介导。了解有益细菌如何减少昆虫害虫的机制是开发可持续农业中有效昆虫害虫管理策略的关键研究领域。