Suppr超能文献

奥罗普切病毒在拉丁美洲的时空生态学:一项基于实验室的多学科建模研究。

The spatiotemporal ecology of Oropouche virus across Latin America: a multidisciplinary, laboratory-based, modelling study.

作者信息

Fischer Carlo, Frühauf Anna, Inchauste Lucia, Cassiano Murilo Henrique Anzolini, Ramirez Heriberto Arévalo, Barthélémy Karine, Machicado Lissete Bautista, Bozza Fernando Augusto, Brites Carlos, Cabada Miguel Mauricio, Sánchez César A Cabezas, Rodríguez Angie Cervantes, de Lamballerie Xavier, de Los Milagros Peralta Delgado Roxana, de Oliveira-Filho Edmilson F, Domenech de Cellès Mathieu, Franco-Muñoz Carlos, Mendoza María Paquita García, Nogueira Miladi Gatty, Gélvez-Ramírez Rosa-Margarita, Gonzalez Manuel Gonzalez, Gotuzzo Eduardo, Kramer-Schadt Stephanie, Kuivanen Suvi, Laiton-Donato Katherine, Lozano-Parra Anyela, Málaga-Trillo Edward, Alva Dora Valencia Manos, Missé Dorothée, Moreira-Soto Andres, Souza Thiago Moreno, Mozo Karen, Netto Eduardo Martins, Olk Nadine, Diaz Johanna Maribel Pachamora, Jorge Célia Pedroso, Astudillo Ana Micsuco Pérez, Piche-Ovares Marta, Priet Stephane, Rincón-Orozco Bladimiro, Romero-Zúñiga Juan José, Cisneros Silvia Paola Salgado, Stöcker Andreas, Ugalde Juan Carlos Villalobos, Centeno Luis Angel Villar, Wenzler-Meya Moritz, Zevallos Juan Carlos, Drexler Jan Felix

机构信息

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Virology, Berlin, Germany.

Unité des Virus Émergents, Marseille, France.

出版信息

Lancet Infect Dis. 2025 Apr 11. doi: 10.1016/S1473-3099(25)00110-0.

Abstract

BACKGROUND

Latin America has been experiencing an Oropouche virus (OROV) outbreak of unprecedented magnitude and spread since 2023-24 for unknown reasons. We aimed to identify risk predictors of and areas at risk for OROV transmission.

METHODS

In this multidisciplinary, laboratory-based, modelling study, we retrospectively tested anonymised serum samples collected between 2001 and 2022 for studies on virus epidemiology and medical diagnostics in Bolivia, Brazil, Colombia, Costa Rica, Ecuador, and Peru with nucleoprotein-based commercial ELISAs for OROV-specific IgG and IgM antibodies. Serum samples positive for IgG from different ecological regions and sampling years were tested against Guaroa virus and two OROV glycoprotein reassortants (Iquitos virus and Madre de Dios virus) via plaque reduction neutralisation testing (PRNT) to validate IgG ELISA specificity and support antigenic cartography. Three OROV strains were included in the neutralisation testing, a Cuban OROV isolate from the 2023-24 outbreak, a contemporary Peruvian OROV isolate taken from a patient in 2020, and a historical OROV isolate from Brazil. We analysed the serological data alongside age, sex, cohort, and geographical residence data for the serum samples; reported OROV incidence data; and vector occurrence data to explore OROV transmission in ecologically different regions of Latin America. We used the MaxEnt machine learning methodology to spatially analyse and predict OROV infection risk across Latin America, fitting one model with presence-absence serological data (seropositive results were recorded as presence and seronegative results were recorded as absence) and one model with presence-only, reported incidence data from 2024. We computed marginal dependency plots, variable contribution, and permutation metrics to analyse the impact of socioecological predictors and fitted a generalised linear mixed-effects model with logit link and binary error structure to analyse the potential effects of age, sex, or cohort type bias and interactions between age or sex and cohort type in our serological data. We conducted antigenic cartography and evolutionary characterisations of all available genomic sequences for all three OROV genome segments from the National Center for Biotechnology Information, including branch-specific selection pressure analysis and the construction of OROV phylogenetic trees.

FINDINGS

In total, 9420 serum samples were included in this study, representing 76 provinces in the six Latin American countries previously mentioned. The sex distribution across the combined cohorts was 48% female (4237 of 8910 samples with available data) and 52% male (4673 of 8910 samples) and the mean age was 29·5 years (range 0-95 years). The samples were collected from census-based cohorts, cohorts of healthy individuals, and cohorts of febrile patients receiving routine health care. The average OROV IgG antibody detection rate was 6·3% (95% CI 5·8-6·8), with substantial regional heterogeneity. The presence-absence, serology-based model predicted high-risk areas for OROV transmission in the Amazon River basin, around the coastal and southern areas of Brazil, and in parts of central America and the Caribbean islands, consistent with case data from the 2023-24 outbreak reported by the Pan American Health Organization. Areas with a high predicted risk of OROV transmission with the serology-based model showed a statistically significant positive correlation with state-level incidence rates per 100 000 people in 2024 (generalised linear model, p=0·0003). The area under the curve estimates were 0·79 (95% CI 0·78-0·80) for the serology-based model and 0·66 (95% CI 0·65-0·66) for the presence-only incidence-based model. Longitudinal diagnostic testing of serum samples from cohorts of febrile patients suggested constant circulation of OROV in endemic regions at varying intensity. Climate variables accounted for more than 60% of variable contribution in both the serology-based and incidence-based models. Antigenic cartography, evolutionary analyses, and in-vitro growth comparisons showed clear differentiation between OROV and its glycoprotein reassortants, but not between the three different OROV strains. PRNT titres of OROV-neutralising serum samples were strongly correlated between all three tested OROV isolates (r>0·83; p<0·0001) but were not correlated with the two glycoprotein reassortants.

INTERPRETATION

Our data suggest that climatic factors are major drivers of OROV spread and were potentially exacerbated during 2024 by extreme weather events. OROV glycoprotein reassortants, but not individual OROV strains, probably have distinct antigenicity. Preparedness for OROV outbreaks requires enhanced diagnostics, surveillance, and vector control in current and future endemic areas, which could all be informed by the risk predictions presented in this Article.

FUNDING

European Union.

TRANSLATIONS

For the Spanish and Portuguese translations of the abstract see Supplementary Materials section.

摘要

背景

自2023 - 2024年以来,拉丁美洲不明原因地经历了一场规模空前且传播范围极广的奥罗普切病毒(OROV)疫情。我们旨在确定OROV传播的风险预测因素和风险区域。

方法

在这项多学科、基于实验室的建模研究中,我们回顾性地检测了2001年至2022年间在玻利维亚、巴西、哥伦比亚、哥斯达黎加、厄瓜多尔和秘鲁收集的匿名血清样本,这些样本用于病毒流行病学研究和医学诊断,采用基于核蛋白的商用酶联免疫吸附测定法检测OROV特异性IgG和IgM抗体。通过空斑减少中和试验(PRNT),对来自不同生态区域和采样年份的IgG阳性血清样本进行针对瓜罗阿病毒以及两种OROV糖蛋白重配体(伊基托斯病毒和马德雷德迪奥斯病毒)的检测,以验证IgG酶联免疫吸附测定法的特异性并支持抗原图谱绘制。中和试验中纳入了三株OROV毒株,一株来自2023 - 2024年疫情的古巴OROV分离株,一株2020年从秘鲁患者身上获取的当代秘鲁OROV分离株,以及一株来自巴西的历史OROV分离株。我们结合血清样本的年龄、性别、队列和地理居住数据、报告的OROV发病率数据以及病媒出现数据,对血清学数据进行分析,以探究拉丁美洲生态不同区域的OROV传播情况。我们使用最大熵机器学习方法对拉丁美洲各地的OROV感染风险进行空间分析和预测,用存在 - 缺失血清学数据拟合一个模型(血清阳性结果记录为存在,血清阴性结果记录为缺失),并用2024年的仅存在的报告发病率数据拟合一个模型。我们计算边际依赖图、变量贡献和置换指标,以分析社会生态预测因素的影响,并拟合一个具有logit链接和二元误差结构的广义线性混合效应模型,以分析年龄、性别或队列类型偏差以及年龄或性别与队列类型之间相互作用在我们血清学数据中的潜在影响。我们对来自美国国立生物技术信息中心的所有三个OROV基因组片段的所有可用基因组序列进行了抗原图谱绘制和进化特征分析,包括分支特异性选择压力分析以及OROV系统发育树的构建。

结果

本研究共纳入9420份血清样本,代表上述六个拉丁美洲国家的76个省份。合并队列中的性别分布为女性48%(8910份有可用数据的样本中4237份),男性52%(8910份样本中4673份),平均年龄为29.5岁(范围0 - 95岁)。样本采集自基于人口普查的队列、健康个体队列以及接受常规医疗保健的发热患者队列。OROV IgG抗体平均检测率为6.3%(95%CI 5.8 - 6.8),存在显著的区域异质性。基于存在 - 缺失血清学的模型预测,亚马逊河流域、巴西沿海和南部地区以及中美洲部分地区和加勒比岛屿为OROV传播的高风险区域,这与泛美卫生组织报告的2023 - 2024年疫情病例数据一致。基于血清学模型预测的OROV传播高风险区域与2024年每10万人的州级发病率呈统计学显著正相关(广义线性模型,p = 0.00

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验