Suppr超能文献

Θ网络:一种用于提高相位调制光学显微照片分辨率的深度神经网络架构

Θ-Net: A Deep Neural Network Architecture for the Resolution Enhancement of Phase-Modulated Optical Micrographs .

作者信息

Kaderuppan Shiraz S, Sharma Anurag, Saifuddin Muhammad Ramadan, Wong Wai Leong Eugene, Woo Wai Lok

机构信息

Faculty of Science, Agriculture & Engineering (SAgE), Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore.

出版信息

Sensors (Basel). 2024 Sep 26;24(19):6248. doi: 10.3390/s24196248.

Abstract

Optical microscopy is widely regarded to be an indispensable tool in healthcare and manufacturing quality control processes, although its inability to resolve structures separated by a lateral distance under ~200 nm has culminated in the emergence of a new field named , while this too is prone to several caveats (namely phototoxicity, interference caused by exogenous probes and cost). In this regard, we present a triplet string of concatenated O-Net ('bead') architectures (termed 'Θ-Net' in the present study) as a cost-efficient and non-invasive approach to enhancing the resolution of phase-modulated optical microscopical images . The quality of the afore-mentioned enhanced resolution (ER) images was compared with that obtained via other popular frameworks (such as ANNA-PALM, BSRGAN and 3D RCAN), with the Θ-Net-generated ER images depicting an increased level of detail (unlike previous DNNs). In addition, the use of cross-domain (transfer) learning to enhance the capabilities of models trained on differential interference contrast (DIC) datasets [where phasic variations are not as prominently manifested as amplitude/intensity differences in the individual pixels unlike phase-contrast microscopy (PCM)] has resulted in the Θ-Net-generated images closely approximating that of the expected (ground truth) images for both the DIC and PCM datasets. This thus demonstrates the viability of our current Θ-Net architecture in attaining highly resolved images under poor signal-to-noise ratios while eliminating the need for PSF and OTF information, thereby potentially impacting several engineering fronts (particularly biomedical imaging and sensing, precision engineering and optical metrology).

摘要

光学显微镜被广泛认为是医疗保健和制造质量控制过程中不可或缺的工具,尽管其无法分辨横向距离在约200纳米以下的结构,这最终催生了一个名为的新领域,而这一领域也容易出现一些问题(即光毒性、外源探针引起的干扰和成本)。在这方面,我们提出了一串串联的O-Net(“珠子”)架构(在本研究中称为“Θ-Net”),作为一种经济高效且非侵入性的方法来提高相位调制光学显微镜图像的分辨率。将上述增强分辨率(ER)图像的质量与通过其他流行框架(如ANNA-PALM、BSRGAN和3D RCAN)获得的图像质量进行比较,结果显示Θ-Net生成的ER图像呈现出更高的细节水平(与之前的深度神经网络不同)。此外,使用跨域(迁移)学习来增强在微分干涉对比(DIC)数据集上训练的模型的能力[与相衬显微镜(PCM)不同,在DIC数据集中,相位变化在各个像素中不像幅度/强度差异那样明显表现出来],使得Θ-Net生成的图像与DIC和PCM数据集的预期(真实)图像非常接近。这因此证明了我们当前的Θ-Net架构在低信噪比下获得高分辨率图像的可行性,同时无需点扩散函数(PSF)和光学传递函数(OTF)信息,从而可能对多个工程领域(特别是生物医学成像与传感、精密工程和光学计量)产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b85/11478931/046105b154d1/sensors-24-06248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验