Suppr超能文献

原位三元加合物形成钇多氨基多羧酸导致小分子捕获和活化。

In Situ Ternary Adduct Formation of Yttrium Polyaminocarboxylates Leads to Small Molecule Capture and Activation.

机构信息

Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, United Kingdom.

MR Neuroimaging agents, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.

出版信息

Chemistry. 2022 Oct 12;28(57):e202201780. doi: 10.1002/chem.202201780. Epub 2022 Aug 22.

Abstract

In this work the chemistry of yttrium complexes is exploited for small molecule capture and activation. Nuclear magnetic resonance (NMR) and density functional theory (DFT) studies were used to investigate the in situ formation of solution state ternary yttrium-acetate, yttrium-bicarbonate, and yttrium-pyruvate adducts with a range of polyaminocarboxylate chelates. These studies reveal that [Y(DO3A)(H O) ] (H DO3A - 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid) and [Y(EDTA)(H O) ] (H EDTA - ethylenediaminetetraacetic acid, q = 2 and 3) are able to form ternary adducts with bicarbonate and pyruvate. In the latter, unusual decarboxylation of pyruvate to form acetic acid and CO was observed and further studied using SABRE-hyperpolarised C NMR (SABRE - signal amplification by reversible exchange) to provide information about the reaction timescale and lifetime of intermediates involved in this conversion. The work presented demonstrates that yttrium complexes can capture and activate small molecules, which may lead to novel and useful applications of this metal in catalysis and medical imaging.

摘要

本工作利用钇配合物的化学性质来捕获和活化小分子。采用核磁共振(NMR)和密度泛函理论(DFT)研究了一系列聚氨基羧酸配体与钇-乙酸盐、钇-碳酸氢盐和钇-丙酮酸的三元配合物在溶液状态中的原位形成。这些研究表明,[Y(DO3A)(H2O)](HDO3A-1,4,7,10-四氮杂环十二烷-1,4,7-三羧酸)和[Y(EDTA)(H2O)](HEDTA-乙二胺四乙酸,q=2 和 3)能够与碳酸氢盐和丙酮酸形成三元加合物。在后一种情况下,观察到丙酮酸发生异常脱羧形成乙酸和 CO,并进一步使用 SABRE-超极化 13C NMR(SABRE-通过可逆交换进行信号放大)进行研究,以提供有关该转化涉及的反应时间尺度和中间体寿命的信息。本工作表明,钇配合物能够捕获和活化小分子,这可能为该金属在催化和医学成像中的应用开辟新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3478/9804984/e4c61b9312ec/CHEM-28-0-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验