Zhang Zhongheng, Chen Lin, Xu Ping, Wang Qing, Zhang Jianjun, Chen Kun, Clements Casey M, Celi Leo Anthony, Herasevich Vitaly, Hong Yucai
Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China.
NPJ Digit Med. 2022 Jul 19;5(1):101. doi: 10.1038/s41746-022-00650-5.
There is a large body of evidence showing that delayed initiation of sepsis bundle is associated with adverse clinical outcomes in patients with sepsis. However, it is controversial whether electronic automated alerts can help improve clinical outcomes of sepsis. Electronic databases are searched from inception to December 2021 for comparative effectiveness studies comparing automated alerts versus usual care for the management of sepsis. A total of 36 studies are eligible for analysis, including 6 randomized controlled trials and 30 non-randomized studies. There is significant heterogeneity in these studies concerning the study setting, design, and alerting methods. The Bayesian meta-analysis by using pooled effects of non-randomized studies as priors shows a beneficial effect of the alerting system (relative risk [RR]: 0.71; 95% credible interval: 0.62 to 0.81) in reducing mortality. The automated alerting system shows less beneficial effects in the intensive care unit (RR: 0.90; 95% CI: 0.73-1.11) than that in the emergency department (RR: 0.68; 95% CI: 0.51-0.90) and ward (RR: 0.71; 95% CI: 0.61-0.82). Furthermore, machine learning-based prediction methods can reduce mortality by a larger magnitude (RR: 0.56; 95% CI: 0.39-0.80) than rule-based methods (RR: 0.73; 95% CI: 0.63-0.85). The study shows a statistically significant beneficial effect of using the automated alerting system in the management of sepsis. Interestingly, machine learning monitoring systems coupled with better early interventions show promise, especially for patients outside of the intensive care unit.
大量证据表明,脓毒症集束化治疗的延迟启动与脓毒症患者的不良临床结局相关。然而,电子自动警报是否有助于改善脓毒症的临床结局仍存在争议。检索电子数据库,从数据库建立至2021年12月,查找比较自动警报与常规治疗对脓毒症管理效果的对比有效性研究。共有36项研究符合分析条件,包括6项随机对照试验和30项非随机研究。这些研究在研究背景、设计和警报方法方面存在显著异质性。以非随机研究的合并效应为先验的贝叶斯荟萃分析显示,警报系统在降低死亡率方面具有有益效果(相对风险[RR]:0.71;95%可信区间:0.62至0.81)。自动警报系统在重症监护病房(RR:0.90;95%CI:0.73 - 1.11)的有益效果低于急诊科(RR:0.68;95%CI:0.51 - 0.90)和病房(RR:0.71;95%CI:0.61 - 0.82)。此外,基于机器学习的预测方法比基于规则的方法(RR:0.73;95%CI:0.63 - 0.85)能更大程度地降低死亡率(RR:0.56;95%CI:0.39 - 0.80)。该研究表明,使用自动警报系统对脓毒症管理具有统计学上显著的有益效果。有趣的是,结合更好的早期干预措施的机器学习监测系统显示出前景,特别是对于重症监护病房以外的患者。