IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3595-3603. doi: 10.1109/TCBB.2021.3122405. Epub 2022 Dec 8.
Sepsis is a major public concern due to its high mortality, morbidity, and financial cost. There are many existing works of early sepsis prediction using different machine learning models to mitigate the outcomes brought by sepsis. In the practical scenario, the dataset grows dynamically as new patients visit the hospital. Most existing models, being "offline" models and having used retrospective observational data, cannot be updated and improved dynamically using the new observational data. Incorporating the new data to improve the offline models requires retraining the model, which is very computationally expensive. To solve the challenge mentioned above, we propose an Online Artificial Intelligence Experts Competing Framework (OnAI-Comp) for early sepsis detection using an online learning algorithm called Multi-armed Bandit. We selected several machine learning models as the artificial intelligence experts and used average regret to evaluate the performance of our model. The experimental analysis demonstrated that our model would converge to the optimal strategy in the long run. Meanwhile, our model can provide clinically interpretable predictions using existing local interpretable model-agnostic explanation technologies, which can aid clinicians in making decisions and might improve the probability of survival.
脓毒症因其高死亡率、高发病率和高经济成本而成为一个重大的公共关注点。目前有许多使用不同机器学习模型进行早期脓毒症预测的研究工作,以减轻脓毒症带来的后果。在实际情况下,随着新患者就诊,数据集会不断增长。大多数现有的模型都是“离线”模型,并且使用回顾性观察数据,因此无法使用新的观察数据进行动态更新和改进。要结合新数据来改进离线模型,需要重新训练模型,这非常耗费计算资源。为了解决上述挑战,我们提出了一种使用在线学习算法(多臂老虎机)的在线人工智能专家竞争框架(OnAI-Comp),用于早期脓毒症检测。我们选择了几个机器学习模型作为人工智能专家,并使用平均后悔值来评估我们模型的性能。实验分析表明,我们的模型从长远来看将收敛到最优策略。同时,我们的模型可以使用现有的局部可解释模型不可知解释技术提供临床可解释的预测,这可以帮助临床医生做出决策,并可能提高生存率。