Kynaston Joshua C, Guiver Chris, Yates Christian A
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
School of Engineering and The Built Environment, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, United Kingdom.
Phys Rev E. 2022 Jun;105(6-1):064411. doi: 10.1103/PhysRevE.105.064411.
We develop theoretical equivalences between stochastic and deterministic models for populations of individual cells stratified by age. Specifically, we develop a hierarchical system of equations describing the full dynamics of an age-structured multistage Markov process for approximating cell cycle time distributions. We further demonstrate that the resulting mean behavior is equivalent, over large timescales, to the classical McKendrick-von Foerster integropartial differential equation. We conclude by extending this framework to a spatial context, facilitating the modeling of traveling wave phenomena and cell-mediated pattern formation. More generally, this methodology may be extended to myriad reaction-diffusion processes for which the age of individuals is relevant to the dynamics.
我们建立了按年龄分层的单个细胞群体的随机模型和确定性模型之间的理论等价关系。具体来说,我们开发了一个分层方程组,用于描述年龄结构多阶段马尔可夫过程的完整动态,以近似细胞周期时间分布。我们进一步证明,在大时间尺度上,由此产生的平均行为等同于经典的麦肯德里克 - 冯·福斯特积分偏微分方程。我们通过将此框架扩展到空间背景来得出结论,这有助于对行波现象和细胞介导的模式形成进行建模。更一般地说,这种方法可以扩展到无数反应扩散过程,其中个体年龄与动态相关。