Suppr超能文献

斑点鬣狗的远距离叫声包含个体特征,但不包含群体特征。

Long-distance vocalizations of spotted hyenas contain individual, but not group, signatures.

机构信息

School of Biological Sciences, University of Nebraska-Lincoln, 1101T Street, Lincoln, NE 68588, USA.

Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.

出版信息

Proc Biol Sci. 2022 Jul 27;289(1979):20220548. doi: 10.1098/rspb.2022.0548. Epub 2022 Jul 20.

Abstract

In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making. Spotted hyenas are social carnivores that live in stable clans of less than 125 individuals composed of multiple unrelated matrilines. Clan members cooperate to defend resources and communal territories from neighbouring clans and other mega carnivores; this collective defence is mediated by long-range (up to 5 km range) recruitment vocalizations, called whoops. Here, we use machine learning to determine that spotted hyena whoops contain individual but not group signatures, and that fundamental frequency features which propagate well are critical for individual discrimination. For effective clan-level cooperation, hyenas face the cognitive challenge of remembering and recognizing individual voices at long range. We show that serial redundancy in whoop bouts increases individual classification accuracy and thus extended call bouts used by hyenas probably evolved to overcome the challenges of communicating individual identity at long distance.

摘要

在动物社会中,身份信号很常见,它们可以调节群体内部的相互作用,并使个体能够区分群体内的同伴和群体外的竞争者。然而,随着群体规模的扩大,以及信号必须在更大的距离上传播,个体识别变得越来越具有挑战性。当成功的群体内/群体外区分是与适应性相关的决策的关键时,群体发声特征可能会进化,但当区分群体内关系对于决策很重要时,仅群体特征是不够的。斑点鬣狗是一种社会性的肉食动物,它们生活在由多个不相关的母系组成的、少于 125 只个体的稳定族群中。族群成员合作保护资源和公共领地免受邻近族群和其他大型肉食动物的侵害;这种集体防御是通过长距离(范围可达 5 公里)的招募叫声,即叫声来介导的。在这里,我们使用机器学习来确定斑点鬣狗的叫声包含个体特征但不包含群体特征,并且传播良好的基频特征对于个体识别至关重要。为了实现有效的族群合作,鬣狗面临着在远距离上记住和识别个体声音的认知挑战。我们表明,叫声系列中的冗余性会提高个体分类的准确性,因此,鬣狗使用的延长叫声可能是为了克服在远距离上传递个体身份的挑战而进化而来的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efdf/9297016/65291254e30a/rspb20220548f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验